Inorg. Chem. 2007, 46, 6811-6826

Square-Planar Rhodium(I) Complexes Partnered with [*arachno*-6-SB₉H₁₂]⁻: A Route toward the Synthesis of New Rhodathiaboranes and Organometallic/Thiaborane Salts

Álvaro Álvarez, Ramón Macías,* María José Fabra, Maria L. Martín, Fernando J. Lahoz, and Luis A. Oro

Departamento de Química Inorgánica, Instituto Universitario de Catálisis Homogénea, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009-Zaragoza, Spain

Received April 4, 2007

Treatment of $[RhCl(\eta^4-diene)]_2$ (diene = nbd, cod) with the N-heterocyclic ligands 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me₂bpy), 1,10-phenanthroline (phen), and pyridine (py) followed by addition of Cs[arachno-6-SB₉H₁₂] affords the corresponding salts, $[Rh(\eta^4-diene)(L_2)][SB_9H_{12}]$ [diene = cod, $L_2 = bpy$ (1), Me_2bpy (3), phen (5), $(py)_2$ (7); diene = nbd, $L_2 = bpy$ (2), Me_2bpy (4), phen (6), $(py)_2$ (8)]. These compounds are characterized by NMR spectroscopy and mass spectrometry, and in addition, the cod-Rh species 1 and 3 are studied by X-ray diffraction analysis. These saltlike reagents are stable in the solid state, but in solution the rhodium(I) cations, [Rh(η^4 -diene)- (L_2)]⁺, react with the polyhedral anion [SB₉H₁₂]⁻ leading to a chemistry that is controlled by the d⁸ transition element chelates. The nbd-Rh(I) complexes react faster than the cod-Rh(I) counterparts, leading, depending on the conditions, to the synthesis of new rhodathiaboranes of general formulas $[8,8-(L_2)-nido-8,7-RhSB_9H_{10}]$ $[L_2 = bpy (9), Me_2bpy$ (10), phen (11), $(py)_2$ (12)] and $[8,8-(L_2)-8-(L')-nido-8,7-RhSB_9H_{10}]$ $[L' = PPh_3, L_2 = bpy$ (13), Me₂bpy (14), phen (15); $L' = NCCH_3$, $L_2 = bpy$ (16), Me₂bpy (17), phen (18)]. Compound 13 is characterized by X-ray diffraction analysis confirming the 11-vertex nido-structure of the rhodathiaborane analogues 14-18. In dichloromethane, 1 and 3 yield mixtures that contain the 11-vertex rhodathiaboranes 9 and 10 together with new species. In contrast, the cod-Rh(I) reagent 5 affords a single compound, which is proposed to be an organometallic rhodium complex bound exo-polyhedrally to the thiaborane cage. In the presence of $H_2(g)$ and stoichiometric amounts of PPh₃, the cod-Rh(I) reagents, 1, 3, and 5, afford the salts $[Rh(H)_2(L_2)(PPh_3)_2][SB_9H_{12}]$ $[L_2 = bpy (19), Me_2bpy (20), phen$ (21)]. Similarly, in an atmosphere of CO(g) and in the presence of PPh₃, compounds 1-6 afford [Rh(L₂)(PPh₃)₂-(CO)][SB₉H₁₂] (L₂ = bpy (22), Me₂bpy (23), phen (24)]. The structures of 19 and 24 are studied by X-ray diffraction analysis. The five-coordinate complexes [Rh(L₂)(PPh₃)₂(CO)]⁺ undergo PPh₃ exchange in a process that is characterized as dissociative. The observed differences in the reactivity of the nbd-Rh(I) salts versus the cod-Rh(I) analogues are rationalized on the basis of the higher kinetic lability of the nbd ligand and its faster hydrogenation relative to the cod diene.

Introduction

The chemistry of metallacarboranes has been reasonably well-studied, and it remains an active research area.¹ In contrast, the reactivity of metallaboranes has been less developed, albeit the published results are important.² Thus, the general route to metallaboranes through the reactions of boranes with transition-element complexes, and the more

specific method through the treatment of monocyclopentadienyl metal halides of groups 5–9 with monoboranes, have permitted the systematic study of their chemistry.³ These studies have resulted in new metallaboranes that challenge well-established electron counting rules⁴ and examples of a rich chemistry with small multiply bonded organic molecules. Reductions,⁵ stoichiometric and catalytic oligomerizations,⁶ complete or partial insertion of heteroatoms (i.e., C or N) into the clusters,⁷ and hydrometalations⁸ are some of the observed reactions.

 $[\]ast$ To whom correspondence should be addressed. E-mail: <code>rmacias@unizar.es.</code>

In comparison, the reaction chemistry of metallaheteroboranes containing p-block elements in the framework other than carbon is relatively unexplored.⁹ This can be attributed in part to the lack of convenient high-yield methods to this subclass of polyhedral boron-containing compounds. Thus, the 11-vertex *nido*-rhodathiaborane [8,8-(PPh₃)₂-8,7-RhSB₉H₁₀], easily prepared from [RhCl(PPh₃)₃] and [6-*arachno*-SB₉H₁₂]^{-,10} is one of the few metallaheteroboranes for which a systematic chemistry has been developed. The study of this PPh₃-ligated rhodathiaborane has demonstrated that the cluster can add a Lewis base without change of the *nido* structure and, additionally, that it can undergo facile substitution of the PPh₃ ligands and *nido* to *closo* transformation, as well as exhibiting other interesting reactivity.¹¹

Our interest in thiaborane and transition metal chemistry led us to exploit other synthetic routes toward rhodathiaboranes bearing different rhodium moieties that could permit

- (1) (a) Deng, L.; Xie, Z. Organometallics 2007, 26, 1832–1845. (b) Wang, X.; Jin, G. X. Chem. –Eur. J. 2005, 11, 5758–5764. (c) Wang, J.-Q.; Ren, C.-X.; Jin, G.-X. Chem. Commun. 2005, 4738–4740. (d) Wang, J.-Q.; Ren, C. X.; Weng, L. H.; Jin, G. X. Chem. Commun. 2006, 162–164. (e) Wang, J. Q.; Herberhold, M.; Jin, G. X. Organometallics 2006, 25, 3508–3514. (f) Hosmane, N. S.; Maguire, J. A. In Comprehensive Organometallic Chemistry; Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: Oxford, U.K., 2007; Vol. 3, Chapter 3.05. (g) Franken, A.; Lei, P.; McGrath, T. D.; Stone, F. G. A. Chem. Commun. 2006, 3423–3425. (h) Douglas, T. M.; Molinos, E.; Brayshaw, S. K.; Weller, A. S. Organometallics 2007, 26, 463–465. (i) Deng, L.; Chan, H. S.; Xie, Z. J. Am. Chem. Soc. 2005, 127, 13774–13775. (j) Crossley, E. L.; Caiazza, D.; Rendina, L. M. Dalton Trans. 2005, 2825–2826. (k) Clarke, A. J.; Ingleson, M. J.; Kociok-Kohn, G.; Mahon, M. F.; Patmore, N. J.; Rourke, J. P.; Ruggiero, G. D.; Weller, A. S. J. Am. Chem. Soc. 2004, 126, 1503–1517.
- (2) Weller, A. S. In *Comprehensive Organometallic Chemistry*, Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: Oxford, U.K., 2007; Vol. 3, Chapter 3.04.
- (3) (a) Bould, J.; Bown, M.; Coldicott, R. J.; Ditzel, E. J.; Greenwood, N. N.; Macpherson, I.; MacKinnon, P.; Thornton-Pett, M.; Kennedy, J. D. J. Organomet. Chem. 2005, 690, 2701–2720. (b) Fehlner, T. P. Organometallics 2000, 19, 2643–2651. (c) Fehlner, T. P. Pure Appl. Chem. 2006, 78, 1323–1331.
- (4) Le Guennic, B.; Jiao, H.; Kahlal, S.; Saillard, J. Y.; Halet, J. F.; Ghosh, S.; Shang, M.; Beatty, A. M.; Rheingold, A. L.; Fehlner, T. P. J. Am. Chem. Soc. 2004, 126, 3203–3217.
- (5) (a) Ditzel, E. J.; Fontaine, X. L. R.; Greenwood, N. N.; Kennedy, J. D.; Zhu, S. S.; Thornton-Pett, M. J. Chem. Soc., Chem. Commun. 1989, 1762–1763. (b) Bould, J.; Rath, N. P.; Barton, L.; Kennedy, J. D. Organometallics 1998, 17, 902–907.
- (6) (a) Yan, H.; Beatty, A. M.; Fehlner, T. P. Organometallics 2002, 21, 5029–5037. (b) Yan, H.; Beatty, A. M.; Fehlner, T. P. Angew. Chem., Int. Ed. 2001, 40, 4498–4501. (c) Shea, S. L.; Jelinek, T.; Perera, S. D.; Stibr, B.; Thornton-Pett, M.; Kennedy, J. D. Dalton Trans. 2004, 1521–1523.
- (7) Ditzel, E. J.; Fontaine, X. L. R.; Greenwood, N. N.; Kennedy, J. D.; Sisan, Z.; Stibr, B.; Thorntonpett, M. J. Chem. Soc., Chem. Commun. 1990, 1741–1743.
- (8) (a) Yan, H.; Noll, B. C.; Fehlner, T. P. J. Am. Chem. Soc. 2005, 127, 4831–4844. (b) Yan, H.; Beatty, A. M.; Fehlner, T. P. J. Am. Chem. Soc. 2003, 125, 16367–16382.
- (9) Wesemann, L. In *Comprehensive Organometallic Chemistry*, Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: Oxford, U.K., 2007; Vol. 3, Chapter 3.03.
- (10) Ferguson, G.; Jennings, M. C.; Lough, A. J.; Coughlan, S.; Spalding, T. R.; Kennedy, J. D.; Fontaine, X. L. R.; Stibr, B. J. Chem. Soc., Chem. Commun. 1990, 891–894.
- (11) (a) Volkov, O.; Macías, R.; Rath, N. P.; Barton, L. Appl. Organomet. Chem. 2003, 17, 409-420. (b) Volkov, O.; Macías, R.; Rath, N. P.; Barton, L. Inorg. Chem. 2002, 41, 5837-5843. (c) Volkov, O.; Macías, R.; Rath, N. P.; Barton, L. J. Organomet. Chem. 2002, 657, 40-47. (d) Macías, R.; Rath, N. P.; Barton, L. Organometallics 1999, 18, 3637-3648. (e) Macías, R.; Rath, N. P.; Barton, L. Angew. Chem., Int. Ed. 1999, 38, 162-164. (f) Volkov, O.; Rath, N. P.; Barton, L. Organometallics 2002, 21, 5505-5514.

the development of a comparative chemistry in a series of isoelectronic 11-vertex clusters. We report here the synthesis of new salts of general formulation $[Rh(\eta^4\text{-diene})(L_2)]$ - $[SB_9H_{12}]$ [diene = cod, nbd; L_2 = bpy, Me₂bpy, phen, (py)₂], which have been found to be appropriate starting materials for the synthesis of 11-vertex *nido*-rhodathiaboranes that contain either {Rh(L₂)}- or {Rh(L₂)L'}-moieties as cluster constituents [L₂ = bpy, Me₂bpy, phen, (py)₂; L' = PPh₃, NCCH₃]. Additionally, these saltlike reagents have permitted a systematic study of the reactivity of square-planar 16-electron complexes [Rh(η^4 -diene)(L₂)]⁺ with the 10-vertex *arachno*-thiaborane [6-SB₉H₁₂]⁻.

Experimental Section

General Considerations. All reactions were carried out under an argon atmosphere using standard Schlenk-line techniques.¹² Solvents were distilled immediately before use under an argon atmosphere: sodium benzophenone ketyl for hexanes; calcium hydride for dichloromethane. All commercial reagents were used as received without further purification. The 10-vertex arachnothiaborane salt CsSB₉H₁₂ was purchased from Katchem. The starting complexes [RhCl(cod)]₂ and [RhCl(nbd)]₂ were prepared by published methods.13 Infrared spectra were recorded in KBr with a Perkin-Elmer Spectrum One spectrometer. C, H, and N analyses were carried out in a Perkin-Elmer 2400 CHNS/O analyzer. NMR spectra were recorded on Bruker Avance 300-MHz and AV 400-MHz spectrometers, using ¹¹B, ¹¹B{¹H}, ¹H, ¹H{¹¹B}, ¹H{¹¹B} (selective)}, ${}^{13}C{}^{1}H$, and $[{}^{1}H-{}^{1}H]$ -COSY techniques. ${}^{1}H$ and ${}^{13}C$ NMR chemical shifts were measured relative to partially deuterated solvent peaks but are reported in ppm relative to tetramethylsilane. ¹¹B chemical shifts were measured relative to [BF₃(OEt)₂)]. ³¹P (121.48 MHz) chemical shifts were measured relative to H₃PO₄ (85%). The temperature of the probe was calibrated using the temperature dependence of the chemical shifts of methanol. Lineshape analysis of the ³¹P-spectra of compound 24 at different temperatures was performed with the gNMR program. Errors in activation parameters obtained from the Eyring regression of the rate constants assumed 1 K error in the temperature and 5% error in the constant and were computed by published methods.¹⁴ Mass spectrometry data were recorded on a VG Autospec double-focusing mass spectrometer, on a microflex MALDI-TOF, and on a ESQUIRE 3000+ API-TRAP, operating in either positive or negative modes.

Crystal Structure Determination of 1, 3, 13, 19, and 24. Crystals suitable for X-ray diffraction analysis were obtained by slow diffusion of hexane at 233 K into CH₂Cl₂ solutions of **1, 3, 13**, and **24** and by diffusion of diethyl ether into an acetone solution of **4**. X-ray data were collected for all complexes at low temperature [100(2) K for **1, 3, 19**, and **24** or 173(2) K for **13**] on a Bruker SMART APEX CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Data were corrected for absorption using a multiscan method applied with SADABS program.¹⁵ The structures were solved by direct methods with

- (13) (a) Abel, E. W.; Bennett, M. A.; Wilkinson, G. J. Chem. Soc. 1959, 3178. (b) Giordano, G.; Crabtree, R. H. Inorg. Synth. 1979, 19, 218.
- (14) Morse, P. M.; Spencer, M. D.; Wilson, Š. R.; Girolami, G. S. Organometallics 1994, 13, 1646.
- (15) (a) SAINT+ Software for CCD diffractometers; Bruker AXS: Madison, WI, 2000. (b) Sheldrick, G. M. SADABS Program for Correction of Area Detector Data; University of Göttingen: Göttingen, Germany, 1999.

⁽¹²⁾ Shriver, D. F., Drezdzon, M. A. *The Manipulation of Air-Sensitive Compounds*; Wiley-Interscience: New York, 1986.

Rh(I) Complexes Partnered with [arachno-6-SB₉H₁₂]⁻

SHELXS-86.¹⁶ Refinement, by full-matrix least squares on F^2 with SHELXL97,¹⁶ was similar for all complexes, including isotropic and subsequently anisotropic displacement parameters for all non-hydrogen nondisordered atoms. Particular details concerning the existence of static disorder and hydrogen refinement are listed in the Supporting Information for this article. All the highest electronic residuals were observed in close proximity to the metals (or in the disordered region) and have no chemical sense.

General Procedure for the Preparation of the [Rh(η^4 -diene)-(L₂)][SB₉H₁₂] Salts. All the salts were prepared from the rhodium complexes [RhCl(η^4 -diene)]₂ (diene = cod, nbd) in either ethanol or methanol under an argon atmosphere. The corresponding ligands bpy, Me₂bpy, phen, and py were added to yellow suspensions of these complexes, affording solutions that were treated with the thiaborane salt CsSB₉H₁₂ to yield the precipitation of solids that were then filtered through a frit and subsequently washed with water, ethanol, and ether. Even though cesium chloride is very soluble in water and ethanol, the precipitates could still occlude some CsCl, and therefore, the resulting solids were dissolved in acetone, where CsCl is insoluble, filtered, and evaporated to dryness, affording the organometallic/thiaboranes salts 1–8. The detailed syntheses of the salts are gathered in the Supporting Information for this article.

The NMR properties of the $[arachno-6-SB_9H_{12}]^-$ anion do not change through the series of organometallic/thiaborane salts, and for simplicity, we list only the ¹¹B and ¹H NRM data of the anion in the salt **1**. The NMR data (virtually identical) of the thiaborane anion in the other salts are gathered in the Supporting Information.

 $[Rh(\eta^4-cod)(bpy)][SB_9H_{12}]$ (1). Yield: 92%. Anal. Calcd for C₁₈H₃₂N₂RhSB₉: C, 42.50; H, 6.34; N 5.51, S, 6.30. Found: C, 42.41; H, 6.41; N, 5.80; S, 6.23. IR (KBr, disk): v 2527 s (BH), 2514 s (BH), 2501 s (BH), 2487 s (BHB), 2463 s (BHB), 2425 s (BHB), 1603 m, 1472 m, 1443 s, 1313 w, 1261 m, 1160 m, 1009 m, 954 m, 864 w, 797 w, 761 s, 727 w, 482 w, 367 w. LRMS (FAB⁺): m/z 367 [M]⁺ (isotope envelope corresponding to the parent ion $[Rh(cod)(bpy)]^+$, 259 $[M - cod]^+$ (isotope envelope). ¹¹B NMR (96 MHz, CD₂Cl₂, 300 K): δ +3.4 (d, 121 Hz, 1BH), -8.5 (d, 148 Hz, 2BH), -11.8 (d, 165 Hz, 1BH), -15.9 (t, 110 Hz, 1BH₂), -34.0 (d, 134 Hz, 2BH), -37.0 (d, 139 Hz, 2BH). ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ 8.18 (m, 4.0 Hz, 4H; $C_{10}H_8N_2$), 7.82 (m, 4.8 Hz, 3H; $C_{10}H_8N_2$), 7.64 (m, 4.7 Hz, 1H; C₁₀H₈N₂), 4.57 (m, 4H; vinyllic), 2.70 (s, 1H; BH), 2.59 (m, 4H; allylic), 2.40 (s, 3H; BH), 2.16 (m, 4H; allylic), 1.26 (s, 1H; BH), 0.67 (s, 2H; BH), 0.44 (s, 1H; BH), 0.30 (s, 2H; BH), -1.84 (s, 2H; BHB).

In dichloromethane solution at room temperature, **1** transforms into a mixture of products of which one has been characterized as [8,8-bpy-*nido*-8,7-RhSB₉H₁₀] (see below); it is likely that one of the other unisolated species is a complex of an organometallic rhodium fragment with the [SB₉H₁₂]⁻ anion (see below for compound **5**). The NMR data of the final mixture are as follows. ¹¹B NMR (96 MHz, CD₂Cl₂, 300 K): δ 16.9 (br.), 10.8 (br); 7.3 (br), 5.4 (d 157 Hz), 3.5, d 135 Hz, 2.5 (sh), -6.2 (br), -8.3 (br), -15.9 (d, 159 Hz), -20.3, -21.5, -24.9 (d, 136 Hz), -29.9, -31.8; -37.0; -38.1; -39.3. ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ 8.30–7.63 (aromatic), 4.67 (BH), 4.59 (m, 4H, vinyllic), 3.70 (BH), 3.24 (BH), 3.17 (BH), 3.05 (BH), 2.66 (BH), 2.60 (m, 4H, allylic), 2.55 (BH), 2.39 (BH), 2.16 (m,4H, allylic), 1.76 (BH), 1.57 (BH), 1.50 (strongest), 1.11 (BH), 0.93 (BH), 0.76 (BH), -0.89 (BHB), -1.83 (BHB), -2.50 (BHB).

[**Rh**(η⁴-**nbd**)(**bpy**)][**SB**₉**H**₁₂] (2). Yield: 90%. The analytically pure product was obtained by crystallization in acetone/ether. Anal. Calcd for C₁₇H₂₈B₉N₂RhS: C, 41.44; H, 5.73; N 5.69, S, 6.51. Found: C, 41.11; H, 5.71; N, 5.70; S, 6.29. IR (KBr, disk): ν 2526 vs (BH), 2410 m (shoulder, BH), 1600 m, 1492 w, 1469 m, 1444 s, 1306 w, 1158 w, 1009 m, 762 w, 726 s, 496 w. LRMS: MALDI⁺, *m*/*z* 351 [M]⁺ (isotope envelope corresponding to the parent ion [Rh(nbd)(bpy)]⁺); MALDI⁻, *m*/*z* 140 [M]⁻ (isotope envelope corresponding to the parent anion [SB₉H₁₂]⁻). ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ 8.18 (m, 6.0 Hz, 4H; C₁₀H₈N₂), 7.62 (m, 4H; C₁₀H₈N₂), 4.43 (m, 2.0 Hz, 4H; vinyllic), 4.14 (s, 2H; nbd), 1.61 (s, 2H; nbd).

[**Rh**(η⁴-cod)(**Me**₂**by**)][**SB**₉**H**₁₂] (3). Yield: 80%. The analytically pure product was obtained by crystallization in acetone/ether. Anal. Calcd for C₂₀H₃₆B₉N₂RhS: C, 44.75; H, 6.76; N 5.22, S, 5.97. Found: C, 44.98; H, 6.96; N, 5.15; S, 6.15. IR (KBr, disk): ν 2515 s (BH), 2500 s (BH), 2545 s (BH), 2399 s, 1616 m, 1489 m, 1481 m, 1428 m, 1331 m, 1305 m, 1006 m, 834 m, 787 w, 476 w. LRMS: MALDI⁺, *m*/*z* 395 (100) [M]⁺ (isotope envelope corresponding to the parent ion [Rh(cod)(Me₂byy)]⁺); MALDI⁻, *m*/*z* 142 [M]⁻ (isotope envelope corresponding to the parent ion SB₉H₁₂]⁻). ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ 7.98 (s, 2H; C₁₂H₁₂N₂), 7.64 (m, 2H; C₁₂H₈N₂), 7.40 (m, 2H; C₁₂H₁₂N₂), 4.53 (m, 4H; vinyllic), 2.69 (14H; allylic + 2CH₃), 2.14 (m, 4H; allylic).

[**Rh**(η⁴-**nbd**)(**Me**₂**bpy**)][**SB**₉**H**₁₂] (4). Yield: 92%. The analytically pure product was obtained by crystallization in acetone/ether. Anal. Calcd for C₁₉H₃₂B₉N₂RhS: C, 43.82; H, 6.19; N 5.38, S, 6.16. Found: C, 43.73; H, 5.95; N, 5.26; S, 6.41. IR (KBr, disk): ν 2523 vs (BH), 2463 m (shoulder, BH), 2423 m (shoulder, BH), 1614 s, 1484 w, 1420 m, 1444 s, 1305 m, 1158 w, 1009 m, 827 m, 795 m, 496 w. LRMS: MALDI⁺, *m*/*z* 379 [M]⁺ (isotope envelope corresponding to the parent ion [Rh(nbd)Me₂bpy]⁺); MALDI⁻, *m*/*z* 140 [M]⁻ (isotope envelope corresponding to the parent ion [SB₉H₁₂]⁻). ¹H NMR (300 MHz, (CD₃)₂CO, 300 K): δ 8.39 (s, 2H; C₁₂H₁₂N₂), 7.78–7.76 (m, 2H; C₁₂H₁₂N₂), 7.58–7.57 (2H; C₁₂H₁₂N₂), 4.58 (m, 2.1 Hz, 4H; vinyllic), 4.12 (br m, 2H; nbd), 2.59 (s, 6H; CH₃), 1.61 (s, 2H; nbd).

[**Rh**(η⁴-cod)(**phen**)][**SB**₉**H**₁₂] (5). Yield: 88%. IR (KBr, disk): ν 2524 vs (BH), 2416 m (shoulder, BH), 2326 w (BHB), 1627 w, 1601 w, 1517 m, 1491 w, 1425 s, 1414 m, 1330 w, 1307 w, 1261 w, 1219 w, 1145 w, 1095 w, 1044 w, 1009 m, 955 w, 911w, 891 w, 874 w, 861 w, 841 s, 815 w, 790 w, 768 w, 746 w, 717 s. 687 w, 645 w, 596 w, 500 w, 491 w, 474 w. LRMS (FAB⁺): *m/z* 391 [M]⁺ (isotope envelope corresponding to the parent ion [Rh(cod)-(phen)]⁺), 283 (48) [M – cod]⁺ (isotope envelope). ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ 8.67 (m, 5.6 Hz, 2H; C₁₂H₈N₂), 8.22 (br s, 2H; C₁₂H₈N₂), 8.08 (m, 2.4 Hz, 1.0 Hz, 2H; C₁₂H₈N₂), 7.95 (m, 2.8 Hz, 2H; C₁₂H₈N₂), 4.78 (br s, 4H; vinyllic), 2.65 (m, 4H; allylic), 2.24 (m, 4H; allylic).

In dichloromethane solution at room temperature, **5** transforms into a new boron-containing species that is unstable and has not been isolated as a pure compound. The following NMR data correspond to the transformation mixture, and the assignments are tentative: ¹¹B NMR (96 MHz, CDCl₃, 300 K) δ 5.1 (d, 123 Hz, 1BH), -8.2 (d, 117 Hz, 3BH), -11.3 (sh, 1BH), -32.9 (d, 123 Hz, 2BH), -38.0 (d, 146 Hz, 2BH); ¹H NMR (400 MHz, CDCl₃, 233 K) δ 8.89 (d, 4.2 Hz, 2H), 8.41 (br s), 8.24 (d, 8.2 Hz, 2H), 7.81 (d, 8.5 Hz, 2H), 7.51 (dd, 4.2, 8.2 Hz, 2H), 7.46 (d, 8.5 Hz, 2H), 3.95 (m, 2H, CH), 3.30 (m, 2H, CH2), 3.32 (br s, 1H, BH), 3.17 (m, 4H, CH₂), 3.05 (m, 2H, CH₂), 2.61 (br s, 1H, BH), 2.52 (br s, 1H, BH), 2.27 (br s, 1H, BH), 2.12 (m, 4H, CH₂), 1.10 (br s, 1H, BH), 0.91 (br s, 2H, BH), 0.82 (br s, 2H, BH), 3.27 (BH), 2.63 (BH), 2.52 (BH), 2.42 (BH), 1.89 (BH), 1.45 (BH), 1.37 (BH),

^{(16) (}a) SHELXTL Package, v. 6.10; Bruker AXS: Madison, WI, 2000.
(b) Sheldrick, G. M. SHELXS-86 and SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.

1.23 (BH), 0.92 (BH), 0.80 (BH), 0.64 (BH), 0.22 (BH), -1.97 (br s, 1H, BHB, 1H), -2.50 (br s, 1H, BHB). LRMS (MALDI⁻): m/z 176 [M]⁻ (isotope envelope corresponding to the anion [SB₉H₁₁Cl]⁻). The results suggest that the new species is a complex of an organometallic fragment of rhodium with a {SB₉H₁₂}- or {SB₉H₁₁Cl}-cage.

Additional NMR data such as $[^{1}H^{-1}H]$ -COSY, illustration of the evolution of the ¹H and ¹¹B NMR spectra of the salt **5** as function of time, and variable-temperature ¹H NMR spectra can be found in the Supporting Information for this article.

[**Rh**(η⁴-**nbd**)(**phen**)][**SB**₉**H**₁₂] (**6**). Yield: 95%. The analytically pure product was obtained by crystallization in acetone/ether. Anal. Calcd for C₁₉H₂₈B₉N₂RhS: C, 44.16; H, 5.46; N 5.42, S, 6. 21. Found: C, 44.31; H, 5.29; N, 5.43; S, 6.19. IR (KBr, disk): *ν* 2513 vs (BH), 2420 m (shoulder, BH), 1515 m, 1425 s, 1307 m, 1221 w, 1175 m, 1011 m, 842 s, 717 s. LRMS: MALDI⁺, *m/z* 375 [M]⁺ (isotope envelope corresponding to the parent ion [Rh(nbd)-(phen)]⁺); MALDI⁻, *m/z* 140 [M]- (isotope envelope corresponding to the parent anion [SB₉H₁₂]⁻). ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ 8.65 (d, 8.3 Hz, 2H; C₁₂H₈N₂), 8.07 (s, 4H; C₁₂H₈N₂), 7.92–7.88 (m, 2H; C₁₂H₈N₂), 4.60 (s, 4H; vinyllic), 4.21 (br s, 2H; nbd), 2.59 (s, 6H; CH₃), 1.52 (s, 2H; nbd).

[**Rh**(η⁴-cod)(**py**)₂][**SB**₉**H**₁₂] (7). Yield: 79%. IR (KBr, disk): ν 3435 m, 3060 w, 3009 w, 2917 w, 2879 w, 2832 w, 2525 vs (BH), 2404 m (shoulder, BH), 2328 w (BHB), 1601 w, 1482 w, 1446 w, 1430 w, 1239 w, 1207 w, 1175 s, 1064 w, 1042 s, 1006 w, 944 w, 913 w, 893 w, 874 w, 786 s, 752 w, 697 w, 637 w, 591 w, 479 w, 452 w, 358 w, 371 w, 358 w. ¹H NMR (300 MHz, CD₂Cl₂, 273 K): δ 8.67 (s, 4H; C₅H₅N), 7.78 (m, 2H; C₅H₅N), 7.40 (m, 6.1 Hz, 4H; C₅H₅N), 4.78 (br s, 4H; vinyllic), 2.65 (m, 4H; allylic), 2.45 (s, 3H, BH), 2.24 (m, 4H; allylic).

[**Rh**(η⁴-**nbd**)(**py**)₂][**SB**₉**H**₁₂] (8). Yields: 74%. IR (KBr, disk): ν 3425 m, 3053 w, 3002 w, 2930 w, 2850 w, 2512 vs (BH), 2343 m (shoulder, BH), 2326 w (BHB), 1600 w, 1484 w, 1445 w, 1403 w, 1303 w, 1212 w, 1174 s, 1064 w, 1043 s, 1007 w, 941 w, 914 w, 798 w, 752 w, 694 w, 637 w, 592 w, 469 w, 450 w, 370 w, 348 w. ¹H NMR (300 MHz, CD₃CN, 300 K): δ 8.43 (m, 4H; C₅H₅N), 7.80 (t, 7.6 Hz, 4H; C₅H₅N), 7.36 (m, 6.1 Hz, 4H; C₃H₅N), 3.94 (s, 4H; vinyllic), 3.82 (br s, 2H; nbd), 1.52 (s, 2H; nbd).

Preparation of the Rhodathiaboranes [8,8-(L₂)-*nido*-8,7-**RhSB**₉H₁₀]. The rhodathiaboranes containing {Rh(L₂)}-fragments were obtained directly from the corresponding [Rh(nbd)(L₂)]-[SB₉H₁₂] salts, 2, 4, and 6 (L₂ = bpy, Me₂bpy, phen).

In a typical reaction, about 50 mg portions of the salts were dissolved in CH_2Cl_2 under an argon atmosphere and the resulting solutions stirred at room temperature for several hours. After this time, the reaction mixtures were filtered through Celite to give dark red solutions, which were evaporated until dryness, and the resulting residues were crystallized from CH_2Cl_2 /hexane to give the 11-vertex *nido*-rhodathiaboranes, **9–11**.

Similarly, the cod- and nbd-Rh(I) salts, **7** and **8**, led to the formation of $[8,8-(py)_2-nido-8,7-RhSB_9H_{10}]$ (**12**).

[8,8-(bpy)-*nido***-8,7-RhSB₉H₁₀] (9).** A 10 mg (0.02 mmol) amount of **2** afforded 6 mg (0.015 mmol, 74%) of **9**. IR (KBr, disk): ν 2957 s, 2924 vs, 2522 (BH), 1740 vw, 1600 w, 1444 m, 1377 m, 1154 sh, 1096 s, 1019 s, 864 m, 800 s, 761 m, 700 w, 658 w. LRMS (MALDI⁻): m/z 398 [M - H]⁻ (isotope envelope corresponding to the parent anion [C₁₀H₁₇N₂RhSB₉]⁻). ¹¹B NMR (96 MHz, CD₂Cl₂, 300 K): δ 17.7 (br d, 143 Hz, 1B), 11.7 (br d, 147 Hz, 1B), 6.8 (d, 154 Hz, 1B), 2.7 (d, 129 Hz, 2B), -15.2 (d, 140 Hz, 1B), -19.9 (d, 147 Hz, 1B), -22.0 (d, 165 Hz, 1B), -32.3 (br d, 167 Hz, 1BH). ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ 9.45 (s, 1H; C₁₀H₈N₂), 8.19 (m, 2H; C₁₀H₈N₂),

 δ 8.43 (m, 4H; C₅H₅N), 3.39 (s, 1H; BH), 2.04 (s, 1H; B H), 1.89 (s, 1H; BH), 1.48 (s, 1H; 1 Hz, 4H; C₅H₅N), 3.94 BH), 1.11 (s, 1H; BH), -0.36 (s, 1H; BHB).

-0.64 (s, 1H; BHB).

[8,8-(py)₂-*nido*-8-,7-SB₉H₁₀**]** (12). ¹¹B NMR (96 MHz, CD₂Cl₂, 300 K): δ 17.7 (br, 1B), 12.5 (br d, 136 Hz, 1B), 6.9 (d, 142 Hz, 1B), 2.0 (d, 128, 2B), -15.3 (d, 143 Hz, 1B), -20.8 (d, 134 Hz, 1B), -22.2 (br, 1B), -33.1 (br, 1B). ¹H NMR (300 MHz, CD₂Cl₂, 273 K): 8.42 (m, 4H; C₅NH₅), 7.97 (m, 1H; C₅NH₅), 7.78 (m, 1H; C₅NH₅), 7.52 (m, 3H; C₅NH₅), 7.31 (m, 1H; C₅NH₅), 4.89 (s, 1H; BH), 3.66 (s, 1H; BH), 3.42 (s, 1H; BH), 2.91 (s, 1H; BH), 2.77 (s, 1H; BH), 1.66 (s, 1H; BH), 1.55 (s, 1H; BH), 1.47 (s, 1H; BH), 1.38 (s, 1H; BH), -0.70 (s, 1H, BHB).

8.07 (m, 2H; C₁₀H₈N₂), 7.70 (m, 1H; C₁₀H₈N₂), 7.52 (m, 1H;

C₁₀H₈N₂), 4.79 (s, 1H; BH), 3.70 (s, 1H; BH), 3.39 (s, 1H; BH),

3.23 (s, 1H; BH), 3.14 (s, 1H; BH), 1.82 (s, 1H; BH), 1.61 (s, 1H;

BH), 1. 27 (s, 1H; BH), 0.97 (s, 1H; BH), -0.78 (s, 1H; BHB).

amount of 4 gave 8.9 mg of 10 (0.021 mmol; 72%). Anal. Calcd

for C₁₂H₂₂B₉N₂RhS: C, 33.79; H, 5.20; N 6.57, S, 7.52. Found:

C, 33.64; H, 5.15; N, 6.39; S, 7.48. IR (KBr, disk): v 2923 s, 2853

s, 2518 vs (BH), 1735 vw, 1615 s, 1556 w, 1443 s, 1378 s, 1261

m, 1216 w, 1095 m, 1021 s, 922 w, 823 s, 802 s, 732 w, 700 w, 551 w, 517 m. LRMS (MALDI⁻): *m/z* 427 [M]⁻ (isotope envelope

corresponding to the parent anion [C₁₂H₂₂N₂RhSB₉]⁻). ¹¹B NMR

(96 MHz, CDCl₃, 300 K): δ 18.8 (v br s, 1B), 12.3 (v br, 1B), 7.1

(v br, 1B), 2.3 (d, 140 Hz, 2B), -15.2 (d, 139 Hz, 1B), -19.3 (d, 150 Hz, 1B), -21.7 (br d, 122 Hz, 1B), -32.2 (v br, 1B). ¹H NMR

 $(300 \text{ MHz}, \text{CDCl}_3, 300 \text{ K}): \delta 9.28 \text{ (d}, 5.4 \text{ Hz}, 1\text{H}; \text{C}_{12}\text{H}_{12}\text{N}_2), 8.50$

(d, 5.4 Hz, 1H; C₁₂H₁₂N₂), 7.92 (s, 1H; C₁₂H₁₂N₂), 7.81 (s, 1H;

C₁₂H₁₂N₂), 7.46 (m, 1H; C₁₂H₁₂N₂), 7.27 (m, 1H; C₁₂H₁₂N₂), 4.82

(s, 1H; BH), 3.87 (s, 1H; BH), 3.52 (s, 1H; BH), 3.27 (s, 1H; BH),

3.22 (sh, 1H; BH), 2.62 (s, 3H; CH₃), 2.54 (s, 3H; CH₃), 1.95 (s,

1H; BH), 1.77 (s, 1H; BH), 1.41 (s, 1H; BH), 1.00 (s, 1H; BH),

[8,8-(phen)-*nido*-8,7-RhSB₉H₁₀] (11). A 10 mg (0.019 mmol) anount of 6 gave 4.2 mg of 11 (0.0099 mmol; 51%). IR (KBr,

disk): v 2962 m, 2850 m 2514 vs (BH), 1630 w, 1598 w, 1577 w,

1514 m, 1495 w, 1424 s, 1387 m, 1302 w, 1261 s, 1088 vs, 1018 vs, 840 s, 799 s, 718 s, 689 m. LRMS (MALDI⁻): *m/z* 423

 $[M]^-$ (isotope envelope corresponding to the parent anion $[C_{12}H_{18}N_2RhSB_9]^-$). ¹¹B NMR (96 MHz, CD₂Cl₂, 300 K): δ 18.8

(br d, 135 Hz, 1B), 12.8 (br d, 146 Hz, 1B), 7.2 (d, 133 Hz, 1B),

4.4 (d, 166 Hz, 1B), 2.6 (d, 137 Hz, 1B), -15.1 (d, 143 Hz, 1B), -19.2 (d, 142 Hz, 1B), -21.8 (d, 155 Hz, 1B), -33.0 (br, 1BH).

¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ 9.72 (s, 1H; C₁₂H₈N₂),

9.47 (s, 1H; C₁₂H₈N₂), 8.62 (m, 2H; C₁₂H₈N₂), 8.50 (m, 2H;

C₁₂H₈N₂), 8.02 (m, 1H; C₁₂H₈N₂), 7.82 (m, 1H; C₁₂H₈N₂), 5.33 (s,

1H; BH), 3.93 (s, 1H; BH), 3.72 (s, 1H; BH), 3.48 (s, 1H; BH),

[8,8-(Me₂bpy)-nido-8,7-RhSB₉H₁₀] (10). A 15 mg (0.02 mmol)

In contrast, the cod–Rh salts 1 and 3 yield mixtures of the *nido*-rhodathiaboranes, 9 and 10, together with new uncharacterized species. Under the same conditions, 5 affords a single boron-containing compound, which, on the basis of NMR data deposited in the Supporting Information, we propose as an *exo*-plolyhedral rhodium/thiaborane complex.

[8,8-(L₂)-8-(PPh₃)-*nido*-8,7-RhSB₉H₁₀] (L₂ = bpy, Me₂bpy, phen). These 11-vertex *nido*-rhodathiaboranes can be obtained from reactions between the salts 1-4 and 6 and triphenylphosphine in a hydrogen atmosphere at room temperature. The nbd-Rh salts react faster than their cod-Rh congeners and afford higher yields. In contrast, the cod-Rh salt **5** affords the rhodium dihydride [Rh-(phen)(PPh₃)₂(H)₂]⁺ under the same conditions (see below).

As reported above, the nbd-containing reagents **2**, **4**, and **6** lead to the formation of the corresponding $[8,8-(L_2)-nido-8,7-RhSB_9H_{10}]$ clusters; thus, *nido*-rhodathiaboranes incorporating $\{(L_2)(PPh_3)Rh\}$

moieties can be alternatively prepared from CH_2Cl_2 solutions of the nbd-Rh salts and triphenylphosphine. However, the salts 1, 3, and 5 do not provide convenient synthetic routes to the PPh₃-ligated *nido*-rhodathiaboranes, 13–15, in the absence of molecular hydrogen as the cod-Rh reagents yield mixtures of the {Rh(L₂)}-*nido*-rhodathiaboranes and new uncharacterized compounds in CH₂Cl₂. The synthetic details of 13–15 are included in deposited material.

[8,8-(bpy)-8-(PPh3)-nido-8,7-RhSB9H10] (13). Yield: 60%. IR (KBr, disk): v 3110 w, 3081 w, 3057 w, 2963 w, 2925 w, 2852 w, 2558 sh (BH), 2505 vs (BH), 1598 m, 1573 w, 1480 m, 1469 m, 1443 s, 1432 s, 1312 m, 1261 s, 1175 w, 1159 w, 1094 s, 1020 s, 1007 s, 865 w, 802 m, 759 s, 750 s, 698 s, 630 w, 528 s, 488 m, 461 w. LRMS (EI): m/z 661 [M]⁺ (isotope envelope corresponding to the parent ion $[C_{28}H_{33}B_9N_2P_1Rh_1S_1]^+$). ¹¹B NMR (96 MHz, acetone- d_6 , 300 K): δ 10.8 (br, 2B), 5.9 (br, 2B), -3.8 (br, 1B), -18.7 (d, 134 Hz, 2B), -23.0 (br, 1B), -30.9 (br, 1B). ¹H NMR (300 MHz, acetone- d_6 , 300 K): δ 9.51 (m, 1H; C₁₀H₈N₂), 9.09 $(m, 1H; C_{10}H_8N_2), 8.25 (m, 2H; C_{10}H_8N_2), 8.11 (m, 1H; C_{10}H_8N_2),$ 8.00 (m, 1H; $C_{10}H_8N_2$), 7.77 (m, 2H; $C_{10}H_8N_2$), 7.35 to 7.23 (m, 15H; PPh₃), 4.21 (s, 1H; BH), 3.91 (s, 1H; BH), 3.82 (s, 1H; BH), 2.64 (s, 1H; BH), 2.59 (s, 1H; BH), 1.81 (s, 1H; BH), 1.53 (s, 2H; BH), 1.01 (s, 1H; BH), -2.13 (s, 1H; BHB). ${}^{31}P{}^{1}H{}$ NMR (121) MHz, acetone- d_6 , 300 K): 35.5 [d, ${}^{1}J({}^{103}\text{Rh}-{}^{31}\text{P}) = 145$ Hz, PPh₃].

[8,8-(Me₂bpy)-8-(PPh₃)-nido-8,7-RhSB₉H₁₀] (14). Yield: 60%. Anal. Calcd for C₃₀H₃₇N₂B₉PRhS: C, 52.31; H, 5.41; N 4.07, S, 4.65. Found: C, 52.48; H, 5.30; N, 3.99; S, 4.70. IR (KBr, disk): v 3050 m, 2915 w, 2516 vs (BH), 1692 w, 1613 m, 1480 m, 1433 s, 1258 w, 1091 m, 1008 m, 917 w, 824 m, 742 s, 696 vs, 532 s. LRMS (MALDI⁺): m/z 689 [M]⁻ (isotope envelope corresponding to the parent anion $[C_{30}H_{37}N_2PRhSB_9]^+$). ¹¹B NMR (96 MHz, CD₂-Cl₂, 300 K): δ 10.5 (br d, 2B), 5.7 (br, 2B), 6.4 (br, 1B), -3.5 (br, 2B), -19.1 (d, 135 Hz, 1B), -23.1 (d, 138 Hz, 1B), -31.2 (br, 1B). ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ 9.28 (s, 1H; $C_{12}H_{12}N_2$), 8.80 (s, 1H; $C_{12}H_{12}N_2$), 7.58–7.17 (19H; PPh₃ + C₁₂H₁₂N₂), 4.16 (s, 1H; BH), 3.71 (s, 2H; BH), 2.53 (s, 1H; BH), 2.49 (s, 3H; CH₃), 2.40 (s, 3H; CH₃), 1.67 (s, 1H; BH), 1.44 (s, 1H; BH), 1.34 (s, 1H; BH), 0.96 (s, 1H; BH), 0.85 (s, 1H; BH), -2.22 (s, 1H; BHB). ³¹P{¹H} NMR (121 MHz, CD₂Cl₂, 300 K): 35.3 [d, ${}^{1}J({}^{103}\text{Rh}{-}^{31}\text{P}) = 146 \text{ Hz}, \text{ PPh}_{3}$].

[8,8-(phen)-8-(PPh₃)-*nido***-8,7-RhSB₉H₁₀] (15). Yield: 61%. Anal. Calcd for C_{30}H_{33}B_9N_2PRhS: C, 52.61; H, 4.86; N 4.09, S, 4.68. Found: C, 52.46; H, 5.15; N, 3.98; S, 4.68. LRMS: MALDI⁺,** *m***/***z* **685 [M]⁺ (isotope envelope corresponding to the parent anion [C_{30}H_{33}N_2PRhSB_9]⁺); MALDI⁻,** *m***/***z* **423 [M - PPh₃]⁻ (isotope envelope). ¹¹B NMR (96 MHz, CD₃CN, 300 K): \delta10.5 (br d, 129 Hz, 2B), 5.6 (br s, 129 Hz, 2B), -4.3 (v br d, 1B), -19.3 (d, 144 Hz, 2B), -23.7 (d, 139 Hz, 1B), -31.2 (br, 1B). ¹H NMR (300 MHz, CD₃CN, 300 K): \delta 9.74 (1H; C₁₂H₈N₂), 9.28 (1H; C₁₂H₈N₂), 8.38 (1H; C₁₂H₈N₂), 8.26 (1H; C₁₂H₈N₂), 7.92 (m, 1H; C₁₂H₈N₂), 7.78 (m, 3H; C₁₂H₈N₂), 7.11-6.99 (m, 15H; PPh₃), 4.87 (s, 1H; BH), 3.85 (s, 1H; BH), 3.76 (s, 1H; BH), 2.72 (s, 1H; BH), 2.50 (s, 1H; BH), -2.02 (s, 1H; BH), ³¹P{¹H} NMR (121 MHz, CD₃CN, 300 K): 35.6 [d, ¹J(¹⁰³Rh-³¹P) = 145 Hz, PPh₃].**

[8,8-(bpy)-8-(NCCH₃)-*nido***-8,7-RhSB₉H₁₀] (16). This compound is formed when the rhodathiaborane 9 is dissolved in CH₃-CN. LRMS (MALDI⁻; DCTB matrix): m/z 646 [M – NCCH₃ – 3H + DCTB]⁻, 491 [M – NCCH₃ – 2H – bpy + DCTB]⁻, 437 [M – 3H]⁻, 398 [M – H – NCCH₃]⁻, 278 [M – bpy – 6H]⁻ (the match between experimental and calculated isotope patterns is good for all the anions). ¹¹B NMR (96 MHz, CD₃CN, 300 K): \delta12.0 (br, 1B), 9.1 (1B), 8.3 (1B), 3.1 (d, 127 Hz, 1B), -4.6 (d, 146 Hz, 1B), -19.6 (d, 133 Hz, 2B), -23.7 (d, 136 Hz, 1B), -31.9**

(br d, 145 Hz, 1B). ¹H NMR (300 MHz, CD₃CN, 300 K): δ 9.01 (d, 5.1 Hz, 1H; C₁₀H₈N₂), 8.90 (d, 5.1 Hz, 1H; C₁₀H₈N₂), 8.38 (d, 8.0 Hz, 1H; C₁₀H₈N₂), 8.03 (t, 8.0 Hz, 1H; C₁₀H₈N₂), 8.16 (t, 7.6 Hz, 1H; C₁₀H₈N₂), 8.03 (t, 7.0 Hz, 1H; C₁₀H₈N₂), 7.72 (t, 5.8 Hz, 1H; C₁₀H₈N₂), 7.50 (t, 6.3 Hz, 1H; C₁₀H₈N₂), 4.09 (s, 1H; BH), 3.68 (s, 1H; BH), 3.32 (s, 1H; BH), 3.32 (s, 1H; BH), 2.08 (s, 1H; BH), 1.37 (s, 3H; BH), 0.72 (s, 1H; BH), -2.37 (s, 1H; BHB). ¹³C NMR (300 MHz, CD₃CN, 300 K): δ 156.77 (s, C_{quart}, bpy), 155.11 (s, C_{quart}, bpy), 15513 (s, CH, bpy), 150.04 (s, CH, bpy), 138.85 (s, CH, bpy), 138.48 (CH, bpy), 126.13 (CH, bpy), 125.25 (CH, C₁₀H₈N₂), 123.07 (s, CH, bpy).

[8,8-(Me₂bpy)-8-(NCCH₃)-*nido***-8,7-RhSB₉H₁₀] (17).** This was obtained from **10** in CH₃CN. LRMS (MALDI⁻; DCTB matrix): m/z 491 [M – Me₂bpy – NCCH₃ – 2H + DCTB]⁻, 426 [M – NCCH₃ – H]⁻, 278 [M – Me₂bpy – 6H]⁻ (the match between experimental and calculated isotope patterns is good for all the anions). ¹¹B NMR (96 MHz, CD₃CN, 300 K): δ 17.3 (br, 1B), 14.3 (2B), 8.3 (1B), 0.7 (d, 127 Hz, 1B), -14.1 (d, 166 Hz, 2B), -18.5 (d, 137 Hz, 1B), -26.5 (d, 130 Hz, 1B). ¹H NMR (300 MHz, CD₃CN, 300 K): δ 8.85 (d, 5.3 Hz, 1H; C₁₂H₁₂N₂), 8.77 (d, 5.1 Hz, 1H; C₁₂H₁₂N₂), 8.27 (s, 1H; C₁₂H₁₂N₂), 8.16 (s, 1H; C₁₂H₁₂N₂), 7.58 (d, 4.7 Hz, 1H; C₁₂H₁₂N₂), 7.37 (d, 5.3 Hz, 1H; C₁₂H₁₂N₂), 4.14 (s, 1H; BH), 3.68 (s, 1H; BH), 3.32 (s, 1H; BH), 2.59 (s, 1H; BH), 2.58 (s, 3H; CH₃), 2.52 (s, 3H; CH₃), 2.03 (s, 1H; BH), 1.35 (s, 2H; BH), 1.25 (s, 1H; BH), 0.74 (s, 1H; BH), -2.35 (s, 1H; BHB).

[8,8-(phen)-8-(NCCH₃)-*nido***-8,7-RhSB₉H₁₀] (18). This was obtained from 11 in CH₃CN. LRMS (MALDI⁻; DCTB matrix): m/z 491 [M - phen - NCCH₃ - 2H + DCTB]⁻, 423 [M - NCCH₃]⁻, 278 [M - phen - 6H]⁻ (the match between experimental and calculated isotope patterns is good for all the anions). ¹¹B NMR (96 MHz, CD₃CN, 300 K): \delta 12.2 (br, 1B), 9.6 (2B), 8.5 (1B), 3.5 (d, 130 Hz, 1B), -4.2 (d, 141 Hz, 1B), -19.8 (d, 166 Hz, 2B), -23.1 (d, 138 Hz, 1B), -31.9 (d, 130 Hz, 1B). ¹H NMR (300 MHz, CD₃CN, 300 K): \delta 9.34 (m, 1H; C₁₂H₈N₂), 9.24 (m, 1H; C₁₂H₈N₂), 8.07 (m, 1H; C₁₂H₈N₂), 8.60 (m, 1H; C₁₂H₈N₂), 8.06 (m, 3H; C₁₂H₈N₂), 7.84 (m, 1H; C₁₂H₈N₂), 4.70 (s, 1H; BH), 3.76 (s, 1H; BH), 2.68 (s, 1H; BH), 2.40 (s, 1H; BH), 1.43 (s, 2H; BH), 1.39 (s, 1H; BH), 0.76 (s, 1H; BH), -2.02 (s, 1H; BHB).**

Rhodium Dihydride Salts [Rh(H)₂(bpy)(PPh₃)₂][SB₉H₁₂] (19). Method A. A suspension of [RhCl(cod)]₂ (40.0 mg, 0.08 mmol) was treated with 25.3 mg (0.16 mmol) of bipyridine dissolved in methanol to give a bright-red solution. Then, 170 mg (0.65 mmol) of PPh3 dissolved in ether was added, and the reaction mixture was stirred under hydrogen atmosphere for 2 days. The resulting orange solution was treated with an aqueous CsSB₉H₁₂ solution (44.5 mg; 0.162 mmol), causing the formation of an orange precipitate, which was filtered out in air and washed with methanol and water: yield 109 mg (72%). Analytically pure compound was obtained by crystallization in CH2Cl2/hexane. Anal. Calcd for C₄₆H₅₂B₉N₂PRhS•2CH₂Cl₂: C, 52.55; H, 5.15; N 2.55. Found: C, 52.70; H, 4.78; N, 2.36. IR (KBr, disk): v 3054 w, 2923 w, 2853 w, 2526 vs (BH), 2441 m (BH), 2419 m (BH), 2098 sh (Rh-H), 2072 m (Rh-H), 1598 m, 1467 m, 1479 m, 1434 s, 1384 w, 1261 w, 1182 m, 1159 m, 1119 m, 1094 s, 1044 w, 1011 m, 971 w, 915 w, 746 s, 694 vs, 587 w, 540 m, 520 vs, 500 m, 452 w, 361 w. MS (FAB⁺, m/z (%)): 785 (82) [M]⁺ (isotope envelope corresponding to the parent ion $[Rh(bpy)(PPh_3)_2(H)_2]^+$, 521 $[M - PPh_3 - 2H]^+$, 441 $[M - PPh_3 - 2H - Ph]^+$, 366 $[M - PPh_3 - 2H - 2Ph]^+$, 259 $[M - 2PPh_3 - 2H]^+$ (isotope envelopes). ¹H NMR (300 MHz, CDCl₃, 300 K): δ 8.05 (d, 2H; C₁₀H₈N₂), 7.96 (d, 2H; C₁₀H₈N₂), 7.79 (t, 2H; C₁₀H₈N₂), 7.56 (d, 1H; PPH₃), 7.49 (m, 2H; PPh₃), 7.35 (m, 27 H; PPh₃), 6.79 (t, 2H; C₁₀H₈N₂), -15.66 (apparent q,

 ${}^{1}J({}^{103}\text{Rh}{-}^{1}\text{H}) \approx {}^{2}J({}^{31}\text{P}{-}^{1}\text{H}) = 15 \text{ Hz}, 2\text{H}; \text{Rh}{-}\text{H}, \{{}^{31}\text{P}\}, \text{d}, {}^{1}J({}^{103}{-}\text{Rh}{-}^{1}\text{H}) = 15 \text{ Hz}). {}^{31}\text{P}\{{}^{1}\text{H}\} \text{ NMR (121 MHz, CDCl_3, 300 K): } \delta$ 47.7 [d, ${}^{1}J({}^{103}\text{Rh}{-}^{31}\text{P}) = 114 \text{ Hz}, \text{PPh}_{3}$].

Method B. A 0.016 g (0.062 mmol) amount of PPh₃ dissolved in Et₂O was added to a suspension of 0.033 g (0.062 mmol) of the salt [Rh(cod)bpy][SB₉H₁₂] (1) in MeOH. The system was cooled to the temperature of liquid nitrogen, and then, a balloon attached to the Scklenk tube and containing hydrogen gas was opened. The reaction mixture was vigorously stirred from low to room temperature, and the stirring, under a hydrogen atmosphere, was maintained for 2 days. After this time, a brown solution and a yellow precipitate were formed. Filtration through a filter stick afforded an orange solution and a brown precipitate. The orange filtrate was evaporated to dryness and crystallized from dichloromethane/hexane to give 0.005 g of the rhodium dihydride salt **19** (16%).

Method C. A 0.035 g (0.0069 mmol) amount of **1** was treated with 0.073 g (0.27 mmol) of PPh₃ in methanol. The reactants were stirred for 6 days at room temperature under argon atmosphere. After this time, NMR spectroscopy of the mixture demonstrated formation of the rhodium dihydride complex in small concentration, together with the starting $[Rh(cod)bpy]^+$ cation. This route, therefore, is not a good method for the preparation of **19**, but it demonstrates that there is formation of the dihydride (in very small amount) in the absence of molecular hydrogen.

[**Rh**(**H**)₂(**Me**₂**bpy**)(**PPh**₃)₂][**SB**₉**H**₁₂] (20). The procedure was similar to method A above but starts from the nbd complex, [RhCl-(nbd)]₂ (40 mg; 0.09 mmol). The hydrogenation of the nbd ligand is faster than that of the cod; thus, the reaction with PPh₃ in hydrogen atmosphere is completed in 4 h. Subsequent addition of the thiaborane salt affords 20 (64 mg; 0.07 mmol; 40%). ¹H NMR (300 MHz, CDCl₃, 300 K): δ 7.87–6.56 (36H, PPh₃ + Me₂bpy), 2.45 (s, 6H; CH₃), -15.78 (apparent q, ¹J(¹⁰³Rh-¹H) \approx ²J(³¹P-¹H) = 14 Hz, 2H; Rh-H, {³¹P}, d, ¹J(¹⁰³Rh-¹H) = 15 Hz). ³¹P-{¹H} NMR (121 MHz, CDCl₃, 300 K): δ 47.3 [d, ¹J(¹⁰³Rh-³¹P) = 115 Hz, PPh₃].

[**Rh**(**H**)₂(**phen**)(**PPh**₃)₂][**SB**₉**H**₁₂] (**21**). **Method A.** A 32 mg (0.18 mmol) amount of phenanthroline was added, dissolved in methanol, to a suspension of [RhCl(cod)]₂ (40 mg, 0.08 mmol) in MeOH. The resulting bright red solution was treated with 170 mg (0.6488 mmol) of triphenylphosphine in ether, and the reaction mixture was stirred under hydrogen atmosphere (balloon attached to the Schlenk tube) for 2 days. Addition of CsSB₉H₁₂ (44.5 mg, 0.16 mmol) dissolved in H₂O cause the precipitation of **21**, which was filtered out in air, washed with methanol/water, and dried in vacuum (110 mg, 72%). LRMS (FAB⁺): m/z 809 [M]⁺ (isotope envelope corresponding to the parent anion [Rh(phen)(PPh₃)(H)₂]⁺), 545 [M

6816 Inorganic Chemistry, Vol. 46, No. 16, 2007

− PPh₃ − 2H]⁺, 468 [M − PPh₃ − 2H − Ph]⁺, 391 [M − PPh₃ − 2H − 2Ph]⁺, 283 [M − 2PPh₃ − 2H]⁺ (isotope envelopes). ¹¹B NMR (96 MHz, CDCl₃, 300 K): δ +3.9 (d, 136 Hz, 1BH), −8.3 (d, 148 Hz, 2BH), −11.3 (d, 165 Hz, 1BH), −16.1 (t, 105 Hz, 1BH₂), −37.0 (d, 137 Hz, 2BH), −33.7 (d, 140 Hz, 2BH). ¹H NMR (300 MHz, CDCl₃, 300 K): δ 8.47 (m, 2H, C₁₂H₈N₂), 8.31 (d, 2H, C₁₂H₈N₂), 7.92 (d, 2H, C₁₂H₈N₂), 7.67 (m, 2H, C₁₂H₈N₂), 7.46 (m, 30H, PPh₃), 3.05 (s, 1H, BH), 2.77 (s, 2H, BH), 2.62 (s, 1H, BH), 2.13 (s,1H, BH), 1.55 (s, 2H, BH), 0.96 (s,1H, BH), 0.66 (s, 2H, BH), −1.60 (s, 2H, BHB), −15.30 (apparent q, ¹J(¹⁰³Rh−¹H) ≈ ²J(³¹P−¹H) = 15 Hz, 2H; Rh−H, {³¹P}, d, ¹J(¹⁰³Rh−¹H) = 16 Hz). ³¹P NMR (121 MHz, CDCl₃, 300 K): 48.4 [d, ¹J(¹⁰³Rh−³¹P) = 114 Hz, PPh₃].

Rhodium Carbonyl Salts $[Rh(CO)(L_2)(PPh_3)_2][SB_9H_{12}]$. The reactions of the salts 1-6 with CO(g) in the presence of PPh₃ afforded the corresponding organometallic/thiaborane salts 22-24. Details of the synthetic procedures are reported in the Supporting Information of this article.

[Rh(CO)(bpy)(PPh₃)₂][SB₉H₁₂] (22). Yield: 48%. IR (KBr, disk): v 3061 w, 2956 w, 2521 s (BH), 2444 m (BH), 1938 vs (CO), 1419 s, 1094 s, 689 s, 519 s. LRMS (FAB⁺): *m*/*z* 811 [M⁺] (isotope envelope corresponding to the parent anion Rh(bpy)(PPh₃)-(CO)]⁺, 549 [M - PPh₃]⁺, 521 [M - PPh₃ - CO] ⁺, 441 [M -2PPh₃ - CO - Ph]⁺, 366 [M - 2PPh₃ - CO - 2Ph]⁺, 259 [M - $2PPh_3 - CO]^+$ (isotope envelops). ¹H NMR (300 MHz, CDCl₃, 300 K): δ 8.83 (d, 2H; C₁₀H₈N₂), 7.66 (t, 2H; C₁₀H₈N₂), 7.432 (m,30H; PPH₃), 7.19 (t, 2H, C₁₀H₈N₂). ¹³C NMR (300 MHz, CD₂-Cl₂, 300 K): δ 193.3 (d, ¹J (¹⁰³Rh, ¹³C) = 79 Hz, C–O), 152.78 (o-C_{auart}, C₁₀H₈N₂), 151.94 (o-CH, C₁₀H₈N₂), 139.003 (p-CH, C10H8N2), 134.16 (CH, PPh3), 131.480 (CH, PPh3), 131.16 (Cquart, PPh₃), 129.32 (CH, PPh₃), 126.07 (m-CH, C₁₀H₈N₂), 123.17 (m-CH, C₁₀H₈N₂). ³¹P NMR (121 MHz, CDCl₃, 233 K): δ 41.7 [d, ${}^{1}J({}^{103}\text{Rh}{-}^{31}\text{P}) = 115 \text{ Hz}, \text{PPh}_{3}]. {}^{31}\text{P} \text{ NMR} (121 \text{ MHz}, \text{CDCl}_{3}, 300 \text{ Hz})$ K): δ 39.3 (br s, coupling not observed).

[**Rh**(**CO**)(**Me**₂**bpy**)(**PPh**₃)₂][**SB**₉**H**₁₂] (23). Yield: 68%. Anal. Calcd for C₄₉H₅₄B₉N₂OP₂RhS: C, 59.98; H, 5.55; N 2.86, S, 3.27. Found: C, 59.88; H, 5.09; N, 2.82; S, 3.57. IR (KBr, disk): ν 3054 w, 2518 vs (BH), 2416 s (BH), 1930 vs (CO), 1612 s, 1479 s, 1434 s, 1092 s, 1009 m, 826 m, 744 m, 694 s, 517 vs ¹H NMR (300 MHz, CDCl₃, 300 K): δ 8.57 (2 H, s, C₁₂H₁₂N₂), 8.41 (2 H, s, C₁₂H₁₂N₂), 7.60 (2 H, s, C₁₂H₁₂N₂), 7.27 (30 H, m, PPh₃), 2.33 (s, 6H; CH₃). ³¹P NMR (121 MHz, CDCl₃, 233 K): 40.5 [d, ¹J(¹⁰³-Rh-³¹P) = 114 Hz, PPh₃]; ³¹P NMR (121 MHz, CDCl₃, 300 K): 38.0 (br s, coupling not observed).

[**Rh**(**CO**)(**phen**)(**PPh**₃)₂][**SB**₉**H**₁₂] (24). Yield: 49%. IR (KBr, disk): ν 3059 w, 2963 w, 2522 s (BH), 2405 m (BH), 1918 m

Rh(I) Complexes Partnered with [arachno-6-SB₉H₁₂]⁻

Table 1.	Experimental	X-ray D	iffraction	Parameters	and Crystal	Data for	[Rh(cod)(b	opy)][SB ₉ H ₁₂]	(1), [Rh(cod)(Me ₂ bpy	$)][SB_9H_{12}]$ (3)
[8,8-(bpy)	-8-(PPh3)-nide	-8,7-RhS	B_9H_{10}] (1	3), [Rh(H) ₂	(bpy)(PPh ₃)	2][SB9H12	2] (19), and	[Rh(CO)(PPh	3)2(phen)	$[SB_9H_{12}]$ (2)	4)

param	1	3	13	19	24
empirical formula	C18H30B9N2RhS	C20H36B9N2RhS	$C_{28}H_{33}B_9N_2PRhS \cdot C_4H_{10}O$	$C_{46}H_{52}B_9N_2P_2RhS \cdot C_2Cl_2 \cdot 1/2C_6H_{14}$	C49H50B9N2OP2RhS+CH2Cl2
mol wt	508.72	536.77	734.91	1055.11	1062.04
cryst dimens (mm)	$0.06 \times 0.11 \times 0.24$	$0.06 \times 0.11 \times 0.12$	$0.04 \times 0.14 \times 0.23$	$0.11 \times 0.21 \times 0.21$	$0.11 \times 0.11 \times 0.22$
cryst system	monoclinic	orthorhombic	monoclinic	monoclinic	monoclinic
space group	$P2_1/n$	$Pca2_1$	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}/n$
<i>a</i> , Å	7.4908(6)	26.7940(12)	10.837(5)	15.1261(7)	14.9411(7)
<i>b</i> , Å	31.049(3)	12.5915(6)	15.444(5)	18.0842(9)	17.2273(8)
<i>c</i> , Å	10.2626(9)	14.7508(7)	22.495(5)	19.6204(9)	20.9301(9)
β , deg	103.560(2)		101.733(5)	100.4770(10)	108.4090(10)
V, Å ³	2320.4(4)	4976.6(4)	3686(2)	5277.6(4)	5111.6(4)
Ζ	4	8	4	4	4
$D(\text{calcd}) (\text{g cm}^{-3})$	1.456	1.433	1.324	1.328	1.380
μ (Mo K α) (mm ⁻¹)	0.836	0.783	0.592	0.562	0.582
$2\theta_{\rm max}$ (deg)	57.8	56.6	57.5	57.8	57.8
transmissn factors	0.827, 0.952	0.798, 0.950	0.874, 0.977	0.889, 0.941	0.880, 0.940
no. of reflcns collcd	12 878	60549	24 289	64 961	62 931
no. of indp reflcns	5492	12 152	8782	12 978	12 574
no. of reflcns obsd $[I > 2\sigma(I)]$	4381	10 316	5890	10 338	9932
no. of params refined	388	631	554	828	806
R	0.0388	0.0419	0.0597	0.0562	0.0576
$R_{\rm w}$	0.0906	0.0827	0.1569	0.1348	0.1162
goodness of fit	1.034	1.05	1.027	1.070	1.117

Table 2. Selected Interatomic Lengths (Å) and Angles (deg) for [Rh(cod)(bpy)][SB₉H₁₂] (1) and [Rh(cod)(Me₂bpy)][SB₉H₁₂] (3)

param	1	3	param	1	3
Rh(1)-N(1)	2.102(2)	2.092(3)	N(1)-C(1)	1.342(4)	1.352(5)
Rh(1) - N(2)	2.089(2)	2.087(3)	N(1)-C(5)	1.354(4)	1.356(5)
Rh(1)-C(11)	2.130(3)	2.129(4)	N(2)-C(6)	1.353(4)	1.353(5)
Rh(1)-C(12)	2.138(3)	2.153(4)	N(2)-C(10)	1.348(4)	1.355(5)
Rh(1) - C(15)	2.119(3)	2.118(4)	C(11)-C(12)	1.388(5)	1.382(6)
Rh(1)-C(16)	2.140(3)	2.146(4)	C(15)-C(16)	1.390(5)	1.395(6)
S(6)-B(av)	1.935(4)	1.954(5)	BB(av)	1.811(6)	1.859(6)
B(2)-B(5)	1.886(5)	1.907(6)	B(4)-B(8)	1.761(6)	1.737(6)
B(2)-B(7)	1.874(6)	1.886(6)	B(4) - B(10)	1.762(5)	1.727(6)
B(9)-B(10)	1.939(9)	1.932(8)	B(8)-B(9)	1.920(8)	1.908(6)
B(9) - B(4)	1.724(8)	1.742(6)	B(5)-S(6)-B(7)	99.17(18)	98.3(2)
N(1)-Rh(1)-N(2)	78.60(9)	79.06(11)	B(2)-B(1)-B(3)	59.1(2)	59.1(2)
B(2) - S(6) - B(5)	58.65(16)	58.3(2)	B(2)-B(1)-B(4)	109.4(3)	109.4(4)
B(2)-S(6)-B(7)	57.90(17)	57.73(18)	B(3)-B(1)-B(4)	59.9(2)	59.7(3)

(CO), 1437 m, 1095 m, 694 s, 541 m, 518 s, 487 m, 449 w, 417 w. LRMS (FAB ⁺): m/z 835 [M⁺] (isotope envelope corresponding to the parent anion [Rh(phen)(PPh₃)(CO)]⁺, 573 [M – PPh₃]⁺, 545 [M – PPh₃ – CO]⁺, 467 [M – PPh₃ – CO – Ph]⁺, 390 [M – PPh₃ – CO – 2Ph]⁺, 283 [M – 2PPh₃ – CO]⁺. ¹H NMR (300 MHz, CDCl₃, 300 K): 9.13 (d, 2H; C₁₂H₈N₂), 8.11 (d, 2H; C₁₂H₈N₂), 7.52 (m, 4H; C₁₂H₈N₂), 7.33 (m, 30H; PPh₃). ¹³C NMR (300 MHz, CD₂Cl₂, 300 K): δ 193.20 (d, ¹J (¹⁰Rh, ¹³C) = 78 Hz, C–O), 151.44 (*o*-CH, C₁₂H₈N₂), 144.35 (*o*-C_{quart}, C₁₂H₈N₂), 133.92 (CH, PPh₃), 133.34 (CH, PPh₃), 130.72 (C_{quart}, PPh₃), 128.31 (CH, PPh₃), 127.04 (*m*-CH, C₁₂H₈N₂), 124.64 (*m*-CH, C₁₂H₈N₂). ³¹P NMR (121 MHz, CDCl₃, 233 K): 41.5 [d, ¹J(¹⁰³Rh–³¹P) = 114 Hz, PPh₃]; ³¹P NMR (121 MHz, CDCl₃, 300 K): 39.3 (br s, coupling not observed).

Results

A. [Rh(η^4 -diene)(L₂)][SB₉H₁₂] Salts. 1. Preparation and Characterization. These salts were prepared by treatment of the rhodium complexes [RhCl(diene)]₂ [diene = cyclooctadiene (cod), norbornadiene (nbd)] with the N-heterocyclic ligands bpy, Me₂bpy, phen, and py in either ethanol or methanol at room temperature, followed by the addition of the thiaborane salt Cs[6-*arachno*-SB₉H₁₂], which resulted in the precipitation of the corresponding salts, 1–8 (Scheme 1). The products were characterized by NMR spectroscopy, elemental analysis, and mass spectrometry. In addition, the structures of compounds **1** and **3** were determined by X-ray crystallographic analysis. The spectroscopic data were in accordance with values previously reported for $[Rh(\eta^4-diene)(L_2)]^+$ complexes partnered with inorganic anions such as PF_6^- , BF_4^- , or $ClO_4^{-.17}$

The ¹¹B NMR spectra of the eight salts contained six signals of 1:2:1:1:2:2 relative intensity between δ +3.4 and -37.0. The presence of the thiaborane anion was additionally confirmed in the ¹H NMR spectra, which featured a higher field resonance (ca. δ -1.80) that corresponds to the two BHB bridging hydrogen atoms, while the ¹H signals of the nine terminal and one *endo* BH hydrogens appeared in the positive region of the spectra between δ +3.00 and 0.00. These ¹¹B and ¹H NMR data match the values in the cesium salt, CsSB₉H₁₂, for which the full assignment of the NMR resonances has been reported.¹⁸

^{(17) (}a) Brodzki, D.; Pannetier, G. J. Organomet. Chem. 1976, 104, 241–251. (b) Usón, R.; Oro, L. A.; Claver, C.; Garralda, M. A. J. Organomet. Chem. 1976, 105, 365–370. (c) Robertson, J.; Kadziola, A.; Krause, R. A.; Larsen, S. Inorg. Chem. 1989, 28, 2097–2102. (d) Dorta, R.; Shimon, L.; Milstein, D. J. Organomet. Chem. 2004, 689, 751–758. (e) Ribeiro, P. E. A.; Donnici, C. L.; dos Santos, E. N. J. Organomet. Chem. 2006, 691, 2037–2043.

Figure 1. ORTEP-type diagrams depicting the molecular structures and label schemes of the $[SB_9H_{12}]^-$ anion and the $[Rh(cod)(Me_2bpy)]^+$ cation in **3**.

In agreement with the formulation of the salts, the ¹H NMR spectra also contained the resonances for the organometallic cations $[Rh(\eta^4\text{-diene})(L_2)]^+$. For the $[Rh(\eta^4\text{-cod})-(L_2)]^+$ complexes in **1**, **3**, **5**, and **7**, the vinyllic and two allylic multiples appeared near δ 4.60, 2.65, and 2.24, respectively, whereas the nbd signals of the $[Rh(\eta^4\text{-nbd})(L_2)]^+$ complexes in **2**, **4**, **6**, and **8** were found close to δ 4.60 (vinyllic), 4.10 (2CH, nbd), and 1.55 (CH₂, nbd). The proton resonances of the coordinated N-donor ligands were found in the aromatic region of the spectra. In addition, the low-resolution mass spectra of the eight salts exhibited the molecular ions of the parent organometallic cations, $[Rh(\eta^4\text{-diene})(L_2)]^+$, and the daughter ions that result from the fragmentation of the diene ligands.

2. Structure of $[Rh(cod)(L_2)][SB_9H_{12}]$ [$L_2 = bpy$ (1), Me₂bpy (3)]. A summary of the crystallographic data and selected bond distances and angles are given in Tables 1 and 2, respectively. The solid-state structures are in agreement with the NMR data, confirming that 1 and 3 are salts of the 16-electron square-planar cations, $[Rh(cod)(bpy)]^+$ and $[Rh(cod)(Me_2bpy)]^+$, respectively, and the 10-vertex *arachno*thiaborane, $[6-SB_9H_{12}]^-$ anion (Figure 1). Although these ions have been crystallographically investigated in CsSB₉H₁₂, $[Au(PPh_3)][SB_9H_{12}]$, and $[Rh(cod)(bpy)][PF_6]$,^{18–20} there are few structural studies of organometallic/thiaborane salts.¹⁸ X-ray crystallographic studies of 1 and 3 were deemed appropriate to investigate possible interionic interactions between the *arachno*-thiaborane cluster and the square-planar d⁸-Rh complex.

The thiaborane anion in **1** exhibited an occupancy disorder between S(6) and B(9), which was modeled including geometry restrains for both atoms and complementary occupancy factors. The dimensions of $[SB_9H_{12}]^-$ in **1** and **3** are comparable to those found for the thiaborane in CsSB₉H₁₂¹⁸ and $[Rh(H)_2(bpy)(PPh_3)_2][SB_9H_{12}]$ (**19**; this work). In particular, the distances B(2)–B(5) and B(2)–B(7) flanking the sulfur atom are longer than the corresponding distances B(4)–B(8) and B(4)–B(10) (Table 2), and the apical boron atom of connectivity three B(9) is ca. 0.20 Å closer to B(4) than to B(8) and B(10). This interatomic length pattern is common to all the crystallographically determined 10-vertex [*arachno*-6-SB₉H₁₂]⁻ clusters.^{18,19}

Figure 2. Packing illustration of 1, showing short interionic contacts.

Figure 3. Packing of 3 viewed along the *c*-axis.

The crystal structure of **1** can be described as columns of $[Rh(\eta^4\text{-cod})(bpy)]^+$ and $[SB_9H_{12}]^-$ ions that stack in an alternate fashion along the *c*-axis (Figure 2). The closest Rh• •B contacts are 3.8540(3) and 3.8882(2) Å for B(2) and B(9), respectively; within the columns, the $[Rh(cod)(bpy)]^+$ complexes adopt an eclipsed disposition, leading to short distances [the shortest for C(8)••C(9) at 3.4828(3) Å] between the bipyridine ligands of adjacent parallel chains (Figure 2). These A⁻••C⁺ chains stack parallel to the *ac* plane, forming layers that pack along the *b* direction.

In the crystal structure of **3**, there are two crystallographically independent anions and cations/unit cell. Similarly to **1**, the crystal structure of **3** may be viewed as ribbons of $[Rh(cod)(Me_2bpy)]^+$ and $[SB_9H_{12}]^-$ that stack in an alternating manner along the crystallographic *b*-axis. In contrast, however, there is only one short interionic Rh•••B distance/ independent rhodium complex at 4.005(5) and 4.062(5) Å, which corresponds to thiaborane anions that stack above the square-planar metal complexes.

In a different view, the structure of **3** can be described as channels of $[Rh(cod)(Me_2bpy)]^+$ cations filled with $[SB_9H_{12}]^-$ anions along the *c*-axis (Figure 3). In the channels, the anions are close to the chelating ligands, cod and Me₂bpy, with an average B--C distance of ca. 4.00 Å.

The Rh••B distances in 1 and 3 are far from the bonding Rh–B lengths at 2.391(3) and 2.385(3) Å that were found

⁽¹⁸⁾ Nestor, K.; Fontaine, X. L. R.; Greenwood, N. N.; Kennedy, J. D.; Thornton-Pett, M. J. Chem. Soc., Dalton Trans. 1991, 2657–2667.
(19) Guggenberger, L. J. J. Organomet. Chem. 1974, 81, 271.

⁽²⁰⁾ Felix, A.; Guadalupe, A. R.; Huang, S. D. Z. Kristallogr.-New Cryst. Struct. 1999, 214, 463.

Figure 4. Stick representation of the ¹¹B NMR resonances for [8,8-(L₂)-8,7-RhSB₉H₁₀].

in [Rh(cod)(HCB₁₁H₁₁)],²¹ where the {Rh(η^4 -cod)} fragment is linked to the carborane ligand through *exo*-polyhedral Rh– H–B bonds; alternatively, the Rh••B distances in the new reagents, **1** and **3**, are similar to the closest B••Rh contact at ca. 4.1 Å in the related [Rh(η^4 -cod)(THF)₂][(HCB₁₁H₁₁)] salt,^{21a} which also exhibits a columnar anion/cation packing with the monocarborane anions occupying two opposite positions in the resulting pseudooctahedral environment of the rhodium(I) element.

B. Synthesis and Characterization of New Rhodathiaboranes. 1. [8,8-(L₂)-*nido*-8,7-RhSB₉H₁₀]. Solutions of the nbd—Rh salts [Rh(η^4 -nbd)(L₂)][SB₉H₁₂] [L₂ = bpy (2), Me₂bpy (4), and phen (6)] in dichloromethane at room temperature evolved into the corresponding 11-vertex *nido*rhodathiaboranes of general formula [8,8-(L₂)-*nido*-8,7-RhSB₉H₁₀] [L₂ = bpy (9), Me₂bpy (10), phen (11)]. The conversion rates of the nbd—Rh(I) salts decreased in the sequence 6 > 2 > 4, with half-lifes of 2, 4, and 7 h, respectively. Similarly, the pyridyl—Rh salts [Rh(η^4 -diene)-(py)₂][SB₉H₁₂] [diene = cod (7), nbd (8)] afforded the analogous rhodathiaborane [8,8-(py)₂-*nido*-8,7-RhSB₉H₁₀] (12), but the reactions took place in minutes either at room or low temperature.

In contrast, $[Rh(\eta^4-cod)(bpy)]^+$ and $[Rh(\eta^4-cod)(Me_2-bpy)]^+$ gave mixtures of the rhodathiaboranes **9** and **10** and new uncharacterized species, whereas the cod—Rh(I) starting material, **5**, afforded selectively a new polyhedral boroncontaining compound. This compound has not been fully characterized, but the NMR data, included in deposited material for this article, showed that it is fluxional, in a process that appears to involve the 10-vertex boat-type $\{SB_9H_{11}\}$ -cluster and a $\{Rh(cod)(phen)\}$ -fragment. The resemblance of the ¹¹B NMR spectrum to that of the starting $[SB_9H_{12}]^-$ anion suggests that the $\{Rh(cod)(phen)\}$ -fragment could be bound to the polyhedral cluster through Rh–H–B bonds, which would resemble the binding in fully characterized *exo*-polyhedral carboranes.²¹ In any event, these results demonstrate the different reactivity of the cod-Rh reagents, 1, 3, and 5, compared with the nbd-Rh counterparts, 2, 4, and 6.

The 11-vertex *nido*-rhodathiaborane **12** is very unstable, and it was only characterized in situ by NMR spectroscopy. Although more stable than the pyridine-ligated derivative **12**, the 11-vertex L_2 -Rh *nido*-analogues **9–11** also decompose after several days in solution. However, they were sufficiently stable to allow their characterization by NMR spectroscopy and mass spectrometry.

The ¹¹B NMR spectra of all these 11-vertex *nido*metallathiaboranes contained nine resonances from δ 20.0 to -32.0; in all the spectra, there was a group of five resonances in the positive region and a set of four signals in the negative area. The average separation between these higher field and lower field groupings is 18 ppm. The phosphine-ligated rhodathiaborane [8,8-(PPh₃)₂-*nido*-7,8-RhSB₉H₁₀]¹⁰ exhibits the same grouping of lower field ¹¹Bresonances; in contrast, the gap with the other four higher field signals is smaller than that found for **9–12** (Figure 4).

2. [8,8-(L₂)-8-(L')-*nido*-8,7-RhSB₉H₁₀]. The rhodathiaboranes of general formula [8,8-(L₂)-8-PPh₃-*nido*-8,7-RhSB₉H₁₀] [L₂ = bpy (13), Me₂bpy (14), phen (15)] can be prepared by either (i) treatment of the diene—Rh salts 1-4 or 6 with PPh₃ in methanol or ethanol at room temperature under a hydrogen atmosphere or (ii) by reaction in CH₂Cl₂ of the nbd—Rh cations [Rh(η^4 -nbd)(L₂)]⁺ in the presence of PPh₃. However, under the same conditions with H₂(g), the phencontaining reagent, **5**, did not afford the 11-vertex *nido*-rhodathiaborane **15** but the salt [Rh(H)₂(phen)(PPh₃)₂]-[SB₉H₁₂] (see below).

The acetonitrile-ligated analogues $[8,8-(L_2)-8-(NCCH_3)-nido-8,7-RhSB_9H_{10}]$ $[L_2 = bpy (16), Me_2bpy (17), phen (18)]$ were formed upon dissolution of the L₂-ligated *nido*-rhodathiaboranes 9-11 in CH₃CN. Alternatively, they can be prepared from the nbd—Rh salts 2, 4, and 6 and an excess of CH₃CN in CH₂Cl₂ solution. Both series of phosphine- and acetonitrile-bearing metallathiaboranes are the result of addition of the Lewis bases, PPh₃ or CH₃CN, to the formally unsaturated rhodium center of the L₂–Rh *nido*-compounds, 9-11, affording clusters with the same *nido*-geometry but one additional skeletal electron pair.

^{(21) (}a) Weller, A. S.; Mahon, M. F.; Steed, J. W. J. Organomet. Chem.
2000, 614, 113-119. (b) Knobler, C. B.; Marder, T. B.; Mizusawa, E. A.; Teller, R. G.; Long, J. A.; Behnken, P. E.; Hawthorne, M. F. J. Am. Chem. Soc. 1984, 106, 2990. (c) Long, J. A.; Marder, T. B.; Behnken, P. E.; Hawthorne, M. F. J. Am. Chem. Soc. 1984, 106, 2979.

Figure 5. Molecular structure and labeling scheme of 13.

Table 3. Selected Interatomic Lengths (Å) and Angles (deg) for $[8,8-(bpy)-8-(PPh_3)-nido-RhSB_9H_{10}]$ (13)

Rh(8)-N(1)	2.178(3)	Rh(8)-B(9)	2.197(5)
Rh(8)-N(2)	2.208(3)	S(7) - B(11)	1.913(6)
Rh(8)-P	2.3210(16)	B(6)-B(11)(shortest)	1.719(8)
Rh(8)-S(7)	2.3592(16)	S(7) - B(2)	1.969(6)
Rh(8)-B(3)	2.171(6)	S(7) - B(3)	2.073(5)
Rh(8) - B(4)	2.196(6)	B(2)-B(3)(longest)	1.913(8)
B-B(av)	1.899(8)		
N(1)-Rh(8)-N(2)	74.64(12)	S(7) - Rh(8) - B(9)	89.60(12)
S(7)-Rh(8)-P	170.30(5)	N(1)-Rh(8)-P	93.46(9)
N(2)-Rh(8)-P	90.91(10)	N(2) - Rh(8) - B(9)	173.00(15)
N(1)-Rh(8)-B(3)	147.75(15)	N(1) - Rh(8) - B(4)	149.81(18)
B(3)-Rh(8)-B(4)	49.0(2)	B(2)-S(7)-B(3)	56.4(2)

Compounds 13–15 were characterized by NMR spectroscopy and mass spectrometry. In addition, 14 and 15 were also characterized by elemental analysis, and the structure of the bipyridine derivative, 13, was determined by X-ray diffraction analysis. This rhodathiaboreane consists of an 11vertex polyhedron notionally derived from a *closo*-icosahedron by removal of a vertex. The pentagonal open face of the new rhodathiaborane is formed by the {Rh(bpy)(PPh₃)} fragment, a sulfur atom, and three BH units, with a BHB bridging hydrogen atom at the B(9)–B(10) edge (Figure 5). Distances and angles are given in Table 3 and fall within the ranges of existing structural data on related rhodathiaboranes.^{10,11}

In **13**, the bipyridine ligand chelates the rhodium center at positions that are trans to B(9) and the B(3)–B(4) edge with the PPh₃ group trans to the sulfur atom S(7). The rhodium center could be described as 5-coordinate and may be formally regarded as an 18-electron complex between the {Rh(PPh₃)(bpy)}⁺ unit and an {SB₉H₁₀}⁻ anionic fragment that acts as a bidentate ligand in an η^4 -fashion. Alternatively, within the general electron-counting and cluster-geometry approach to polyhedral boron compounds,²² this rhodathiaborane is a 26-electron system for which the observed 11vertex *nido*-structure is predicted.

Figure 6. Packing diagram of the crystal structure of 13 along the *a*-axis.

There are three ideal configurations of the metal coordination environment for {Rh(bpy)(PPh₃)} fragment with respect to the {S(7)B(3)B(4)B(9)} face, and compound **13** exhibits that shown in schematic **A**. This ligand configuration was also found in [8,8-(η^2 -dppe)-8-(CO)-*nido*-8,7-RhSB₉H₁₀] (dppe = Ph₂PCH₂CH₂PPh₂).²³ By contrast, the dangling unidentate dppm-ligand in the isoelectronic 11-vertex rhodathiaborane [8,8-(η^2 -dppm)-8-(η^1 -dppm)-*nido*-8,7-RhSB₉H₁₀] is *trans* to the B(3)-B(4) edge, configuration **B**,^{11d} and the acetonitrile derivative [8,8-(η^2 -dppe)-8-(NCCH₃)-*nido*-8,7-RhSB₉H₁₀]²³ exhibits the configuration **C**, in which the NCCH₃ ligand is trans to B(9).

In the crystal structure of **13**, the rhodathiaborane clusters associate in pairs through sextuple phenyl embrace (SPE) interactions (Figure 6). The P••P separation and the Rh–P••P–Rh colinearity are 6.9 Å and 172°, respectively, and fall in the range reported for this attractive edge-to-face interaction.²⁴ The resulting rhodathiaborane "dimers" pack along the *a*-axis, forming ribbons in which the bipyridine ligands face the thiaborane cages of adjacent clusters at short B••C contacts, the shortest being 3.7 Å (Figure 6).

The NMR spectra of **13** agree with the molecular structure found in the solid state. A comparison with the NMR data of **14–18** permitted the characterization of all the compounds as 11-vertex *nido*-rhodathiaboranes that incorporate a {Rh-(L₂)(L')}-moiety into the cluster framework (L₂ = bpy, Me₂bpy, phen; L' = PPh₃, NCCH₃). The ¹¹B NMR spectra of the PPh₃-ligated derivatives were broader than those of the NCCH₃-ligated analogues, reflecting the larger bulkiness of the former compounds. There were five boron resonances that group at lower fields than the other four-boron signals; the gap between these groupings was, however, smaller than

⁽²³⁾ Adams, K. J.; McGrath, T. D.; Rosair, G. M.; Weller, A. S.; Welch, A. J. J. Organomet. Chem. 1998, 550, 315–329.

⁽²⁴⁾ Dance, I.; Scudder, M. J. Chem. Soc., Chem. Commun. 1995, 1039–1040.

Figure 7. $^{1}H{^{11}B}$ spectra of [8,8-(Me₂bpy)-*nido*-8,7-RhSB₉H₁₀] (10): (a) in CDCl₃; (b) in CDCl₃ with a 1 to 4 ratio of 10 to CH₃CN; (c) in CDCl₃ with a 1 to 20 ratio of 10 to CH₃CN; (d) in CD₃CN.

in 9–12. In addition, the average chemical shift of the boron resonances of the L'-adducts (L' = PPh₃, NCCH₃), 13–18, shifted slightly toward higher fields with respect to 9-12.

The ³¹P NMR spectra of the PPh₃-ligated adducts, 13-15, contained a sharp doublet at room temperature that confirms the presence of the PPh₃-Rh linkage. In contrast, the NCCH₃ ligand in 16–18 dissociates in CDCl₃ solutions to give 9–11. In CD₃CN solvent, however, the ${}^{1}H{}^{11}B{}$ NMR signal of the BHB bridging hydrogen atom shifts considerably to high field with respect the same resonance in chloroform (see Figure 7). As described below, we have found that a high-field shift of the BHB-bridging resonance is a good diagnostic of Rh-L' binding in 11-vertex nidorhodathiaboranes that incorporate 16-electron $\{Rh(L_2)\}$ fragments. Moreover, addition of excess of acetonitrile to solutions of the nido-rhodathiaboranes 9-11 in CDCl₃ results (i) in a shift of the ¹H NMR cluster resonances toward lower frequencies and (ii) in a broadening of the signals (Figure 7). These results are consistent with fast exchange between Rh-coordinated and free acetonitrile:

 $[8,8-(L_2)-8,7-RhSB_9H_{10}] + CH_3CN \rightleftharpoons$ $[8,8-(L_2)-8-(NCCH_3)-8,7-RhSB_9H_{10}] (1)$

A comparison between the BHB-proton resonance positions in the series of compounds reported here and previously reported 11-vertex *nido*-rhodathiaboranes reveals that this signal shifts significantly depending on the nature and the number of the Rh-bound *exo*-polyhedral ligands (Figure 8). Thus, there is a move toward lower field on replacing the PPh₃ ligand in [8,8-(PPh₃)₂-*nido*-8,7-RhSB₉H₁₀] by either pyridine or bipyridine in **12** and **9**. By contrast, in the analogue [8,8-(η^2 -dppe)-*nido*-8,7-RhSB₉H₁₀],²³ the BHB resonance shifts toward higher field. It is also evident that saturation of the rhodium center by PPh₃ and η^1 -dppm in **13** and [8,8-(η^2 -dppm)-8-(η^1 -dppm)-8,7-RhSB₉H₁₀],^{11d} respectively, results in a shift to higher field with respect to the unsaturated rhodathiaboranes **9** and [8,8-(η^2 -dppe)-8,7-

Figure 8. Stick representation of the B(9)-H-B(10) bridging proton resonance for [8,8-(L₂)-*nido*-8,7-RhSB₉H₁₀] and [8,8-(L₂)-8-(L)-*nido*-8,7-RhSB₉H₁₀].

RhSB₉H₁₀].²³ This suggests that the higher field shift of the BHB proton resonance correlates with a negative charge buildup on the metal center of the 11-vertex rhodathiaboranes [PPh₃ vs dppe; (L_2) -Rh vs $(L_2)(L')$ -Rh]. According to this charge/BHB proton-shift relationship, the superior σ -donor character of the bpy ligand relative to the PPh₃ groups would entail a higher negative charge on the rhodium center and a consequent shift of the BHB proton resonance to higher fields. On this rationale, it is, therefore, contradictory that the BHB bridging hydrogen signal in 9 appears at lower fields than in the PPh₃ derivative, [8,8-(PPh₃)₂-nido-8,7-RhSB₉H₁₀]. A similar π -acceptor character of the Nheterocyclic ligands relative to the phosphine ligands²⁵ could imply a higher degree of charge delocalization over the cluster in the L₂-ligated rhodathiaboranes ($L_2 = py$, bpy, Me₂bpy, phen), which would result in a marked different transeffect to the BHB hydrogen atom.

C. Synthesis and Characterization of Other Salts. 1. $[Rh(H)_2(L_2)(PPh_3)_2][SB_9H_{12}]$ ($L_2 = bpy$, Me_2bpy , phen). The treatment of 1-4 and 6 with an excess of PPh₃ in an H₂(g) atmosphere yielded, as described above, the corre-

⁽²⁵⁾ Leyssens, T.; Peeters, D; Orpen, A. G.; Harvey, J. N. Organometallics 2007, 26, 2637.

sponding 11-vertex rhodathiaboranes, **13–15**. By using stoichiometric amounts of PPh₃ in an H₂(g) atmosphere, the starting salts afforded mixtures that contained the corresponding 11-vertex {Rh(L₂)(PPh₃)}–*nido*-rhodathiaboranes, the starting [Rh(η^4 -diene)(L₂)]⁺ complexes, and the d⁶-rhodium dihydrides, [Rh(H)₂(L₂)(PPh₃)₂]⁺ (L₂ = bpy, Me₂bpy, phen), in different proportions. In contrast, [Rh-(cod)(phen][SB₉H₁₂] (**5**), under the same conditions, afforded selectively the [Rh(phen)(PPh₃)₂(H)₂][SB₉H₁₂] salt, with either excess or stoichiometric amounts of phosphine.

On the other hand, the treatment of the pyridine-containing salts **7** and **8** with PPh₃ in $H_2(g)$ atmosphere afforded [8,8-(PPh₃)₂-*nido*-8,7-RhSB₉H₁₀],¹⁰ which is most likely the result of {Rh(py)₂}-fragment insertion/py substitution reactions.

In view of these results, we used an indirect route for the synthesis and isolation of new $[Rh(H)_2(L_2)(PPh_3)_2][SB_9H_{12}]$ [L₂ = bpy (**19**), Me₂bpy (**20**), phen (**21**)] salts, which consisted of the treatment of the dimers $[RhCl(\eta^4-diene)]_2$ (diene = cod, nbd) with PPh₃ in the presence of H₂(g), followed by addition of CsSB₉H₁₂ to precipitate the Rh-hydride/thiaborane salts in either methanol or ethanol.

The ¹¹B spectra of **19–21** in CDCl₃ exhibited the signals of the thiaborane anion [SB₉H₁₂]⁻ as the only boroncontaining species, and the ¹H{¹¹B} NMR spectra confirmed the partnership of this anion with the corresponding d⁶rhodium cations, [Rh(H)₂(L₂)(PPh₃)₂]⁺. The proton resonances of the N-donor and triphenylphosphine ligands displayed the expected relative intensities when compared with the proton resonances of the thiaborane cluster. In addition, there was an apparent quartet close to δ –15.50, which became a doublet in the ¹H{³¹P} spectra of the salts and corresponds to the hydride ligands. In turn, the ³¹P{¹H} NMR spectrum contained a doublet, which through the series is close to δ +47.0.

The $[Rh(H)_2(bpy)(PPh_3)_2]^+$ complex **19** was first isolated with typical inorganic anions $(BF_4^-, ClO_4^-, PF_6^-, etc.);^{26}$ however, neither their NMR data were reported nor were their crystallographic structures determined. Thus, we carried out a crystallographic study of **19**, aimed at measuring structural parameters of the Rh(III) complex and analyzing potential interionic interactions.

The molecular structure of the cationic d^6 -Rh(III) complex in the salt **19** is depicted in Figure 9, and some selected distances and angles are gathered in Table 4. The quality of the crystal allowed the location of all the hydrogen atoms of the thiaborane anion: nine BH terminal, two BHB bridging, and one *endo*-B(9)–H. The molecular dimensions of the cluster are similar to those found in **1** and **3**, and they are commented upon above.

The cation $[Rh(H)_2(bpy)(PPh_3)_2]^+$ exhibits a distorted octahedral coordination sphere around the rhodium(III) atom. In agreement with the NMR data, the two phosphine groups are trans to each other, and the hydrides occupy positions trans to the nitrogen atoms of the chelating bpy ligand. The bond distances are within the range found in reported

Figure 9. ORTEP-type illustration of [Rh(H)₂(bpy)(PPh₃)₂]⁺ in 19.

Table 4. Selected Interatomic Lengths (Å) and Angles (deg) for $[Rh(H)_2(bpy)(PPh_3)_2][SB_9H_{12}]$ (19)

L ()=(15)(+)=3			
Rh(1)-P(1)	2.2941(9)	Rh(1)-N(1)	2.164(3)
Rh(1)-P(2)	2.3004(9)	Rh(1)-N(2)	2.146(3)
S(6)-B(2)	1.954(5)	S(6) - B(5)	1.949(5)
S(6)-B(7)	1.946(5)	B(2) - B(5)	1.905(6)
B(2) - B(7)	1.888(7)	B(4)-B(8)(shortest)	1.728(6)
B(9) - B(4)	1.738(6)	B(9)-B(8)(longest)	1.918(6)
B(9)-B(10)	1.910(6)		
P(1) - Rh(1) - P(2)	159.75(3)	N(1) - Rh(1) - N(2)	76.06(10)
P(1) - Rh(1) - N(1)	99.42(8)	B(2) - S(6) - B(7)	57.9(2)
P(1)-Rh(1)-N(2)	98.43(8)	B(2) - S(6) - B(5)	58.43(18)
P(2)-Rh(1)-N(1)	97.25(8)	B(2)-B(1)-B(3)	58.8(3)
P(2)-Rh(1)-N(2)	96.69(8)	B(2)-B(1)-B(4)	109.1(3)

rhodium(III) *cis*-dihydrido complexes with N-chelating ligands.²⁷ A structural feature of **19** and related hexacoordinated rhodium(III) complexes²⁷ is the bending of the phosphine ligands toward the hydrides resulting in P–Rh–P bond angles close to 160°.

In the extended crystal structure of **19**, each $[Rh(H)_2(bpy)-(PPh_3)_2]^+$ cation exhibits two SPE interactions that lead to the formation of chains along the P–Rh–P direction. In addition, as shown in Figure 10, the bipyridine ligands on one chain penetrate the phenyl ring region of adjacent parallel chains. The result is the formation of zigzag layers of cations that grow parallel to the (101) crystallographic direction. The SB₉H₁₂ anions pack between the layers in close proximity to the bpy ligands.

2. [Rh(CO)(L₂)(PPh₃)₂][SB₉H₁₂] (L₂ = bpy, Me₂bpy, phen). Treatment of 1-6 with excess of triphenylphosphine in an atmosphere of carbon monoxide led to the formation of [Rh(CO)(L₂)(PPh₃)₂][SB₉H₁₂] [L₂ = bpy (22), Me₂bpy (23), phen (24)], which were characterized by multinuclear NMR spectroscopy. The ³¹P{¹H} NMR spectra of these species at low temperatures contained a doublet near δ +40.0, which broadened, became asymmetric, and eventually

⁽²⁶⁾ Cocevar, C.; Camus, A.; Mestroni, G. J. Organomet. Chem. 1972, 35, 389.

^{(27) (}a) Ghedini, M.; Neve, F.; Lanfredi, A. M. M.; Ugozzoli, F. Inorg. Chim. Acta 1988, 147, 243-250. (b) Iglesias, M.; Del Pino, C.; Garciá-Blanco, S.; Martínez Carrera, S. J. Organomet. Chem. 1986, 317, 363-372. (c) Iglesias, M.; del Pino, C.; Nieto, J. L.; Garcia Blanco, S.; Martínez Carrera, S. Inorg. Chim. Acta 1988, 145, 91-98. (d) Iglesias, M.; del Pino, C.; San Jose, A.; Martínez-Carrera, S.; Ros, J. J. Organomet. Chem. 1989, 366, 391-401.

Figure 10. Illustration of SPE interactions in 19.

Figure 11. Molecular structure of [Rh(CO)(phen)(PPh₃)₂]⁺ in 24.

coalesced as the temperature was increased. Thus, at room and higher temperatures the ${}^{1}J({}^{103}\text{Rh},{}^{31}\text{P})$ coupling constant was not observed.

This behavior was studied at different concentrations of free PPh₃ for the phen-derivative, **24**, and the data were analyzed by means of conventional line-shape programs. The values of *k* were found to be independent of the concentration of phosphine, indicating that they correspond to rates of PPh₃ dissociation from the five-coordinate cations. The activation parameters obtained form the Eyring plot, $\Delta H^{\ddagger} = 14 \pm 0.5$ kcal mol⁻¹ and $\Delta S^{\ddagger} = 1 \pm 1$ eu, are consistent with a dissociative process.

The solid-state structure of **24** revealed the cation as an 18-electron rhodium(I) complex with a trigonal-bipyramidal geometry (Figure 11). The phosphine ligands lie trans to one another in the axial positions, while the phenanthroline and carbonyl occupy the equatorial positions. The Rh–N bond distances fall within the reported range 1.76–2.89 Å (Table 5); thus, the values are toward the longer end of the interval, which between 2.20 Å and the upper end point represents 11% of the reported Rh–N distances.

Figure 12. Model used for disordered thiaborane anions in 24.

Figure 13. Illustration of SPE-driven intermolecular $A^--C^+-C^+-A^-$ associations.

Table 5.	Selected Bond Distances (Å) and Angles (deg) for	•
[Rh(phen)	$(PPh_3)_2(CO)_2[SB_9H_{12}]$ (24)	

Rh(1)-P(1)	2.3251(9)	Rh(1)-N(1)	2.355(3)
Rh(1)-P(2)	2.3168(9)	Rh(1)-N(2)	2.201(3)
Rh(1)-C(3)	1.793(3)	C(3)-O	1.154(4)
$\begin{array}{l} Rh(1)-C(3)-O\\ P(1)-Rh(1)-P(2)\\ P(2)-Rh(1)-C(3)\\ N(1)-Rh(1)-P(1)\\ N(2)-Rh(1)-P(1)\\ N(1)-Rh(1)-P(2) \end{array}$	178.6(3) 168.68(3) 84.03(10) 92.68(7) 89.47(7) 98.64(7)	P(1)-Rh(1)-C(3) N(2)-Rh(1)-P(2) N(1)-Rh(1)-C(3) N(2)-Rh(1)-C(3) N(1)-Rh(1)-N(2)	88.35(10) 94.05(7) 132.00(12) 155.79(12) 72.19(10)

Likewise for the six-coordinate rhodium(III) dihydride complex in **19**, and related species,²⁷ the PPh₃ ligands of the five-coordinate cation in **24** bend toward the carbonyl ligand, forming an angle of $168.68(3)^\circ$ that is 9° larger than the corresponding P–Rh–P angle in [Rh(H)₂(phen)(PPh₃)]⁺.

The thiaborane anion was found to be disordered, and the molecular parameters are not discussed. It was modeled as two interwoven molecules as illustrated in Figure 12. In the crystal structure of **24**, the metal complexes exhibit SPE interactions that lead to intercationic "dimers" that are intercalated between two thiaborane anions. The result is the formation of $A^{-}mC^{+}mA^{-}$ associations that pack along the *a* direction (Figure 13).

Discussion

Scheme 2 illustrates that the main result of the reactivity of the square-planar Rh(I)/thiaborane saltlike compounds is formation of 11-vertex *nido*-rhodathiaboranes. These reagents exhibit significant differences in reaction rates, selectivities, and products that depend on the composition of the metal complexes. Thus, the $[Rh(nbd)(L_2)]^+$ cations, containing N-chelating ligands, react faster with the polyhedral thiaborane, $[SB_9H_{12}]^-$, than the cod-Rh congeners, $[Rh(cod)(L_2)]^+$, either in the presence or the absence of molecular hydrogen. More importantly, the nbd-Rh salts **2**, **4**, and **6** afford the Scheme 3

[8,8-(L2)-nido-8,7-RhSB9H10]

corresponding rhodathiaboranes 9-11 as the only polyhedral boron-containing compounds whereas the cod-Rh reagents 1, 3, and 5 yield mixtures of 11-vertex *nido*-rhodathiaboranes and a new (not fully characterized) species. We propose that these new compounds are exo-polyhedral Rh complexes with the thiaborane cluster $[SB_9H_{12}]^-$ acting as a ligand through its hydridic BH bonds. The nbd-Rh reagents lead to higher reaction rates and selectivities in the synthesis of new nidorhodathiboranes that contain the Rh-bound N-chelating ligands bpy, Me₂bpy, and phen.

Within each diene-Rh class, the N-heterocyclic ligands further determine the insertion reaction rates, which for the nbd-Rh reagents decrease in the sequence 6 (phen) > 2 (bpy) > 4 (Me₂bpy). The same order is observed for the transformation of the cod-Rh salts, 1, 3, and 5, which react much more slowly than the nbd analogues. In contrast to the N-chelators, the pyridine ligands in 7 and 8 enhance dramatically the reactivity of the Rh(I) square-planar cations $[Rh(\eta^4-diene)(py)_2]^+$ with the polyhedral thioborane anion $[SB_9H_{12}]^-$, leading to instantaneous formation of the 11vertex *nido*-rhodathiaborane **12**. Thus, the pyridine ligand determines the reactivity of the salts.

The formation of the new 11-vertex rhodathiaboranes 9–12 implies the insertion of a $\{Rh(L_2)\}$ -fragment $[L_2 = bpy]$, Me₂bpy, phen, $(py)_2$ into the {SB₉H₁₀}-cage with concomitant elimination of the η^4 -diolefin ligands from the metal complex and two hydrogen atoms from the thiaborane cluster. In the absence of hydrogen, we have found (by NMR and GC-MS) that the final mixtures resulting from the reactions of the nbd-Rh(I) cations with the $[SB_9H_{12}]^-$ anions in 2, 4, and 6 contain the diolefin nbd and its reduction product norbornene (nbdH₂) whereas, under the same conditions, the cod-Rh(I) reagents afford only the partially hydrogenated product cyclooctene (codH₂). These general observations suggest that the reactions between the squareplanar Rh(I) cations and the thiaborane anion may proceed through two main pathways: (a) partial substitution of the η^4 -diolefin ligand by the thiaborane cluster to give incipient $[Rh(\eta^2-diene)(L_2)(SB_9H_{12})]$ complexes that can subsequently undergo elimination of the η^2 -coordinated diolefin and molecular hydrogen, thus leading to the final insertion of the {Rh(L₂)}-fragment [L₂ = bpy, Me₂bpy, $(py)_2$]; (b) transfer of two hydrogen atoms from the thiaborane cluster to the η^4 -diene ligand, forming reactive [Rh(η^2 -dieneH₂)- $(L_2)SB_9H_{10}$ ⁺ intermediates that would finally result in the incorporation of the $\{Rh(L_2)\}$ -fragment into the cluster (Scheme 3).

In the presence of PPh₃ and molecular hydrogen, similar routes involving either substitution or hydrogenation of the diolefins can be envisioned. Thus, gas chromatography of the reaction mixtures showed that for the cod-containing reactants there is formation of the alkene cyclooctene whereas, for the nbd-reagents, we found free nbd and its reduction product, norbornane, nbdH₄. These results suggest that interplay of PPh₃/H₂(g) with the Rh(I) salts is most likely to yield intermediates of the type $[Rh(\eta^2-diene)(L_2)(PPh_3)]^+$ and $[Rh(\eta^2-dieneH_2)(L_2)(PPh_3)]^+$, which could react further with (i) H₂(g) and PPh₃ to give the Rh(III) complexes [Rh-(H)₂(PPh₃)₂(L₂)]⁺ or with (ii) the thiaborane anion [SB₉H₁₂]⁻ to afford the *nido*-rhodathiaboranes **13**–**15**. In the case of [Rh(η^4 -nbd)(L₂)]⁺, the reactions appear to proceed through two complementary pathways: (i) substitution of the diolefin norbornadiene; (ii) full reduction of the diene to norbornane. In contrast, [Rh(η^4 -cod)(L₂)]⁺ appears to react after partial reduction of the diolefin cyclooctadiene.

In view of these mechanistic suggestions, the differences in the observed reactivity of the cod-Rh salts versus the nbd-Rh analogues could be, in a first instance, the consequence of the relative labilities and hydrogenation rates of the Rh-bound diolefins. Thus, it is known that the cod ligand in $[Rh(cod)(PR_3)_2]^+$ complexes is hydrogenated at rates a hundred times slower than the nbd group in analogous Rh-(I) complexes,²⁸ and although the nbd-Rh bond is thermodynamically more stable than the cod-Rh linkage, nbd-Rh complexes are more labile with respect to diene exchange.²⁹ Therefore, if either partial substitution or hydrogenation of the diene is playing a role in the reactions between the Rh-(I) complexes and the $[SB_9H_{12}]^-$ thiaborane, the cod-Rh salts 1, 3, and 5 should feature longer reaction times than the nbd analogues 2, 4, and 6. Moreover, the lower reaction rates of the Rh-coordinated cod ligand toward either substitution or hydrogenation could favor alternative reaction pathways that, as observed for the salts 1, 3, and 5, may afford the new species that we propose to be exo-polyhedral rhodium complexes with the *arachno*-thiaborane $[SB_9H_{12}]^-$ (Scheme 3).

The observed enhancement of reactivity of the $[Rh(\eta^4-diene)(py)_2]^+$ complexes with the $[SB_9H_{12}]^-$ anion in 7 and 8 versus their $[Rh(\eta^4-diene)(L_2)]^+$ congeners $(L_2 = bpy)$, Me₂bpy, phen) may be due to the higher lability and conformational flexibility of the pyridine ligands compared to the chelating N-heterocycles, which, consequently, may result in the formation of intermediates with lower activation energies toward {Rh(py)_2}-fragment insertion in the thiaborane cage. Interestingly, the reactivity of 7 and 8 depends markedly on the solvent, and thus, as described above, when dissolved in CH₂Cl₂, the salts immediately afford the rhodathiaborane 12 at room and at low temperatures. In contrast, 7 and 8 are surprisingly stable in CH₃CN, where they may be studied at room temperature without apparent decomposition for hours.

The dramatic decrease in the reactivity of the pyridinecontaining salts **7** and **8** in acetonitrile can be rationalized as consequence of the interaction of the solvent with the square-planar 16-electron compounds $[Rh(\eta^4-diene)(py)_2]^+$ resulting in an effective protection of the rhodium complexes against reaction with the thiaborane anion $[SB_9H_{12}]^-$. Formation of 5-coordinate $[Rh(\eta^4\text{-diene})(NCCH_3)(py)_2]^+$ adducts in fast equilibrium with 4-coordinate $[Rh(\eta^4\text{-diene})(py)_2]^+$ complexes can be a dominant factor in shielding the rhodium complexes toward formation of reactive $[Rh(\eta^2\text{-diene})(py)_2 - (SB_9H_{12})]$ species.

In contrast to the starting materials 1-8, the dihydride rhodium(III)-containing salts 19-21 are stable in solution and the solid state. This behavior indicates that the dihydride complexes $[Rh(H)_2(L_2)(PPh_3)_2]^+$ do not react with the thiaborane anion $[SB_9H_{12}]^-$ to give 11-vertex $\{Rh(L_2)(PPh_3)\}$ nido-rhodathiaboranes. Therefore, to obtain good yields of the rhodathiaboranes [8,8-(L₂)-8-(PPh₃)-*nido*-8,7-RhSB₉H₁₀] 13–15 from the treatment of the diene–Rh(I) salts 1–6 with PPh₃ in an H₂(g) atmosphere, the reactions of putative [Rh- $(\eta^2$ -diene)(L₂)(PPh₃)]⁺ or [Rh(η^2 -dieneH₂)(L₂)(PPh₃)]⁺ intermediates with the thiaborane anion to lead to insertion of the $\{Rh(L_2)(PPh_3)\}$ moiety into the cluster framework should be faster than for the oxidative addition of $H_2(g)$ and PPh₃ coordination to the rhodium center, which alternatively affords the corresponding rhodium(III) dihydrides. In the case of the $[Rh(cod)(phen)]^+$ cation, the rate of $\{Rh(PPh_3)(phen)\}$ fragment insertion into the thiaborane appears to be slower than for the formation of the Rh(III) complex with either excess or stoichiometric amounts of phosphine, yielding, therefore, exclusively the $[Rh(H)_2(phen)(PPh_3)_2]^+$ species. In contrast, the reactivity of the bpy and Me₂bpy counterparts $[Rh(cod)(L_2)]^+$ to give either the PPh₃-ligated rhodathiaboranes or the hydride complexes depends on the concentration of phosphine.

The 11-vertex rhodathiaboranes 9–12 are new examples of borane-based clusters containing square-planar 16-electron transition-element centers, which deviate from the classical Williams-Wade cluster-geometry electron-counting relationship.²² According to this interpretation, the *nido*-structural architecture would formally require 13 skeletal electron pairs (sep). However, an electron count of the constituent vertices gives only 12 sep for the clusters. Thus, 9-12 are formally unsaturated, albeit with the unsaturation localized on the 16electron rhodium center. In an alternative description, therefore, these rhodathiaboranes may be regarded as complexes of 16-electron $\{Rh(L_2)\}^+$ metal moieties with the $[nido-SB_9H_{10}]^-$ group acting as tetrahapto ligand with bidentate character: this implies a two-orbital metal-toheteroborane bonding interaction and a corresponding basic four-orbital square-planar metal coordination sphere. This alternative view of the 11-vertex nido-clusters 9-12 as square-planar 16-electron complexes reveals the presence of a Lewis acidic site at the metal center, which rationalizes the observed reactivity of these compounds with Lewis bases.

Finally, it is noteworthy that compounds 9-12 decompose slowly over days in CH₂Cl₂ under an argon atmosphere to yield insoluble materials. This instability contrasts with the behavior of the phosphine-ligated analogues [8,8-(PPh₃)₂*nido*-8,7-RhSB₉H₁₀] and [8,8-(dppe)-*nido*-8,7-RhSB₉H₁₀], which are stable for weeks in CH₂Cl₂ solution at room temperature. Interestingly, the PPh₃ and NCCH₃ adducts are also more stable than their corresponding [8,8-(L₂)-*nido*-8,7-

⁽²⁸⁾ Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. **1976**, 98, 2134–2143.

⁽²⁹⁾ Volger, H. C. M. M. P.; Gaasbeek, M.; Hogeveen, H.; Vrieze, K. Inorg. Chim. Acta 1969, 3, 145–150.

RhSB₉H₁₀] (L₂ = bpy, Me₂bpy, phen) precursors and, within the {Rh(L₂)(L')}-containing series **13–18**, those with the phosphine ligands exhibit higher stability than the NCCH₃ derivatives. This may be due in part to the dissociation of the Rh-coordinated acetonitrile ligand that has been observed to occur when the NCCH₃-coordinated *nido*-rhodathiaboranes are dissolved in CH₂Cl₂.

Conclusions

The reactivity of the new organometallic/thiaborane salts 1-8 is controlled by the square-planar rhodium(I) complexes. The nbd-Rh complexes drive the transformation of these salts toward insertion of the rhodium centers into the $\{SB_9H_{10}\}$ -cluster framework. In contrast, the cod-Rh complexes promote alternative reaction pathways that in the case of the phen-containing salt **5** afford a new compound, which we propose as an *exo*-polyhedral rhodium complex of the thiaborane anion [6-*arachno*-SB₉H₁₂]. The square-planar nbd-Rh(I) reagents yield faster reactions and higher selectivities than their cod-Rh congeners. These results appear to be a consequence of the higher kinetic lability of the nbd ligand and its faster hydrogenation relative to the cod diene.

New convenient synthetic procedures toward metallathiaboranes that contain N-heterocyclic ligands have been developed. In view of their low stability relative to previously reported Rh-phosphine analogues, the new 11-vertex *nido*- species **9–12** can be regarded as "slightly stabilized" rhodathiaboranes, suggesting that other Lewis bases could generate clusters that incorporate $\{Rh(L_2)(L')\}$ moieties (where $L_2 = N$ -heterocyclic chelating ligand, L' = Lewis base). A comparative chemistry in the series of isoelectronic 11-vertex *nido*-rhodathiaboranes could, therefore, be developed.

Acknowledgment. This work was supported by the Ministerio de Educación y Ciencia (MEC, Spain) (Factoría de Cristalización, CONSOLIDER INGENIO-2010, and Grant 2003-05412). R.M. thanks the MEC-Universidad de Zaragoza for his Research Contract in the framework of the "Ramón y Cajal" Program.

Supporting Information Available: Details of the synthesis and isolation of (a) the salts 1-8, (b) the rhodathiaboranes 13-15, and (c) the CO–Rh salts 22-24, NMR spectra of the transformation of 1, 5, and 7 in CD₂Cl₂ at different times, NMR spectra of the proposed *exo*-polyhedral rhodium complex that results from 5, NMR spectra of compound 9 in CDCl₃ with addition of CH₃CN, X-ray diffraction details, atomic coordinates, bond lengths and angles, isotropic and anisotropic displacement parameters, and CIF files, and rate constants for PPh₃ exchange at different concentrations. This material is available free of charge via the Internet at http://pubs.acs.org.

IC700648Z